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general idea and implementation
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Motivation

Increasing need for a fast simulation:

• High resolution models

• History-matching

• Optimization

• Uncertainty quantification

• More complex physics
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How to improve performance?

• Decrease complexity

– Physics

– Upscale

– Multiscale

• Increase computational power

– Multicore systems with shared memory

– Clusters with distributed memory

– Manycore architectures (GPU, Xeon Phi)
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Discretization in reservoir simulation
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Forward simulation requirements

Robustness - Fully Implicit Method

• is unconditionally stable

• results in highly nonlinear equations

Efficiency - nonlinear solution

• advanced nonlinear solvers

• physics-based linear solvers

• implementation on advanced 
architectures

The linearization procedure is important
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Fully implicit: how to linearize equations?

Types of linearization:

I. Numerical

II. Analytical

III. Automatic Differentiation

IV.Operator-Based 

Linearization (OBL)

Flexibility

PerformanceAccuracy

I

II

III

IV
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Operator form of equations
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Operator-Based Linearization
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Adaptive parametrization

Khait and Voskov (2018)
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Delft Advanced Research Terra 

Simulator in numbers

• 6 PhD and 1 PD projects

• 9 MSc projects defended so far 

• Advance performance of simulation: 

• Around 100 times faster than average COMSOL model, 

• 3-5 times faster vs. state-of-the-art research simulators 

(ADGPRS, TOUGH2), 

• Close to performance of commercial simulators,

• Fully GPU version is ready (6-15 times faster).

• Various physics included: convection, thermal conduction, 

diffusion, gravity, capillarity, chemistry (kinetic and 

equilibrium)

• Variety of applications: geothermal, black-oil, thermal-

compositional, EOR, gas storage, hydrates etc.

https://darts.citg.tudelft.nl/

https://darts.citg.tudelft.nl/
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engine_pz<NC>

engine_pz_gc<NC, NP>

engine_pzt<NC>

engine_pzh<NC>

static_ itor<NC, 
NO> 

adaptive_itor<NC, 
NO> 

DARTS architecture

Accumulation

Convection

Black oil (C++)

Compositional 
(C++/Libraries) 

Geothermal 
(Python, IAPWS-97)Diffusion

Thermal compositional 
(C++/Libraries)Reaction

Chemical formulation
(Python)

static_itor
<NC, NO> 

adaptive_itor
<NC, NO> 

state

operator values & derivatives

state

operator values

DARTS-physics: hybridDARTS-engine: C++ & CUDA
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DARTS-GPU
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Den Haag project: sensitivity study

Perkins (2019)
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CRECCIT project: sensitivity

– One doublet has been drilled

– High uncertainty: well logs from the 
production well are only available

– Second doublet has been planned based 
on P50 case of first doublet

– We showed that use P50 scenario based 
only on one well data is misleading

Saied et al. (2020)

3.2M grid blocks, 100 years of simulation

doublet 1 doublet 2

doublet 1 doublet 2
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Adaptive Mesh Refinement
fine AMR coarse

Jones (2019)
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Supercritical CO2 dissolution in aqueous brine

Post-
injection

100 
years

300 
years

500 
years

Morshuis (2019)
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Fast kinetic Slow kinetic

krate = 0.005 [1/day] → Da = 12.5 krate = 5e-7 [1/day] → Da = 1.25e-3

Carbonate dissolution

de Hoop and Voskov (2018)
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Modeling of dissolution in fractured networks

Decrease fracture aperture
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Modeling of dissolution in core

Snippe et al., 2019

Step 1: porosity interpretation (image subtraction, filtering, gridding)

Step 2: modeling of dissolution (combination of DARTS + PHREEQC)

Margert, 2019
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Modeling of foam CT experiments

CT

DARTS

CT

DARTS

Tang et al. (2019)
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Physics-based data-driven proxy model

High fidelity model Proxy Model

Control volumes ~70 thousand ~300

Reservoir properties Realization #73 Regressed to the data

Production data 20*120 days 20*120 days + coarsening

Simulation time (AD-GPRS) 645 seconds 8.3 seconds

Simulation time (DARTS) 97 seconds 0.46 -> 0.03 seconds

70,000 to 300 c.v.

Blinovs, 2019
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Conclusion

• OBL framework proves to be 

– Accurate for various applications,

– Flexible for complex extensions,

– Highly efficient in terms of CPU,

– Extendable to advanced architectures. 

• New generation research code DARTS

– New release will be delivered soon,

– Easy to work with, but knowledge of 

reservoir simulation and Python is required.
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