

DARTS workshop

Operator-Based Linearization approach: general idea and implementation

Motivation

Increasing need for a fast simulation:

- High resolution models
- History-matching
- Optimization
- Uncertainty quantification
- More complex physics

How to improve performance?

- Decrease complexity
 - Physics
 - Upscale
 - Multiscale
- Increase computational power
 - Multicore systems with shared memory
 - Clusters with distributed memory
 - Manycore architectures (GPU, Xeon Phi)

Discretization in reservoir simulation

Forward simulation requirements

Robustness - Fully Implicit Method

- is unconditionally stable
- results in highly nonlinear equations
 Efficiency nonlinear solution
- advanced nonlinear solvers
- physics-based linear solvers
- implementation on advanced architectures

The linearization procedure is important

Fully implicit: how to linearize equations?

ŤUDelft

Operator form of equations

$$V\phi\left[\left(\sum x_{cj}\rho_{j}s_{j}\right)^{n+1} - \left(\sum x_{cj}\rho_{j}s_{j}\right)^{n}\right] - \Delta t\sum_{k\in L}\sum_{j=1}^{n_{p}}\left(x_{cj}\rho_{j}\lambda_{j}\Gamma\right)^{l}\left(p-p^{l}\right) = 0$$

$$\phi_0 V[\alpha_c(\omega) - \alpha_c(\omega_n)] + \sum_k \Delta t \Gamma^l(\omega_1^l - \omega_1) \beta_c(\omega) = 0$$

 $\omega = \{p, z_1, \dots, z_{n_c-1}\}$ (can include *T* or *h* for thermal)

$$\alpha_c(\omega) = c(p) \sum_{j=1}^{n_p} x_{cj} \rho_j s_j, \qquad \beta_c(\omega) = \sum_{j=1}^{n_p} x_{cj}^l \rho_j^l \frac{k_{rj}^l}{\mu_j^l}$$

Operator-Based Linearization

 $\left|\widehat{\beta_c} - \beta_c\right| \le cV^2 \sup_{\omega} |\nabla^2 \beta_c|$

Adaptive parametrization

Delft Advanced Research Terra Simulator in numbers

- 6 PhD and 1 PD projects
- 9 MSc projects defended so far
- Advance performance of simulation:
 - Around 100 times faster than average COMSOL model,
 - 3-5 times faster vs. state-of-the-art research simulators (ADGPRS, TOUGH2),
 - Close to performance of commercial simulators,
 - Fully GPU version is ready (6-15 times faster).
- Various physics included: convection, thermal conduction, diffusion, gravity, capillarity, chemistry (kinetic and equilibrium)
- Variety of applications: geothermal, black-oil, thermalcompositional, EOR, gas storage, hydrates etc.

10

DARTS architecture

DARTS-GPU

ŤUDelft

Den Haag project: sensitivity study

GR 11.63 gAPI 127.9

Perkins (2019)

CRECCIT project: sensitivity

- One doublet has been drilled
- High uncertainty: well logs from the production well are only available
- Second doublet has been planned based on P50 case of first doublet
- We showed that use P50 scenario based only on one well data is misleading

3.2M grid blocks, 100 years of simulation

80

100

Saied et al. (2020)

Adaptive Mesh Refinement

ŤUDelft

Jones (2019)

Supercritical CO2 dissolution in aqueous brine

ŤUDelft

Morshuis (2019)

Carbonate dissolution

Fast kinetic

Slow kinetic

de Hoop and Voskov (2018)

Modeling of dissolution in fractured networks

Cave "Ioio"

Cave "Torrinha"

Decrease fracture aperture

Modeling of dissolution in core

Step 1: porosity interpretation (image subtraction, filtering, gridding)

Step 2: modeling of dissolution (combination of DARTS + PHREEQC)

Modeling of foam CT experiments

JDelft

Tang et al. (2019)

Physics-based data-driven proxy model

	High fidelity model	Proxy Model
Control volumes	\sim 70 thousand	~300
Reservoir properties	Realization #73	Regressed to the data
Production data	20*120 days	20*120 days + coarsening
Simulation time (AD-GPRS)	645 seconds	8.3 seconds
Simulation time (DARTS)	97 seconds	0.46 -> 0.03 seconds

TUDelft

Blinovs, 2019

Conclusion

- OBL framework proves to be
 - Accurate for various applications,
 - Flexible for complex extensions,
 - Highly efficient in terms of CPU,
 - Extendable to advanced architectures.
- New generation research code DARTS
 - New release will be delivered soon,
 - Easy to work with, but knowledge of reservoir simulation and Python is required.

References

- Voskov, D., 2017: Operator-based linearization approach for modeling of multiphase multicomponent flow in porous media. Journal of Computational Physics.
- Khait, M. and Voskov, D., 2018: Adaptive Parameterization for Solving of Thermal/Compositional Nonlinear Flow and Transport With Buoyancy. SPE Journal.
- DARTS, 2019: Delft Advanced Research Terra Simulator. https://darts.citg.tudelft.nl/
- Wang Y., Voskov D., Khait M., Bruhn D., 2020. An efficient numerical simulator for geothermal simulation: A benchmark study, Applied Energy, 264, 114693, ISSN 0306-2619. <u>https://doi.org/10.1016/j.apenergy.2020.114693</u>.
- Perkins, D., 2019: Reservoir Simulation for Play-based Development of Low Enthalpy Geothermal Resources: Application to the Delft Sandstone, Den Haag, MSc Thesis, TU Delft. <u>http://resolver.tudelft.nl/uuid:3b0a34c9-2080-4361-b36d-7b2d7095962f</u>
- Saeid, S., Wang, Y., Daniilidis, A., Khait, M., Voskov, D. and Bruhn, D., 2020: Lifetime and Energy Prediction of Geothermal Systems: Uncertainty Analysis in Highly Heterogeneous Geothermal Reservoirs (Netherlands), World Geothermal Congress. <u>https://pangea.stanford.edu/ERE/db/WGC/papers/WGC/2020/22157.pdf</u>
- Jones, E., 2019: Applications of unstructured multi-level grid to thermal-reactive flow and transport in porous media, MSc
 Thesis, TU Delft. <u>http://resolver.tudelft.nl/uuid:3b0a34c9-2080-4361-b36d-7b2d7095962f</u>
- de Hoop, S., Voskov, D. and Bertotti, G., 2019: Uncertainty quantification and history matching for naturally fractured carbonate reservoirs. Third EAGE WIPIC Workshop: Reservoir Management in Carbonates, Qatar. <u>https://www.earthdoc.org/content/papers/10.3997/2214-4609.201903106</u>
- Morshuis, N., 2019. An improved carbon dioxide thermodynamic model applied for reservoir simulation. MSc thesis, Delft University of Technology. <u>http://resolver.tudelft.nl/uuid:41291fae-70ec-43ae-8973-1d7003a76f8e</u>
- de Hoop, S., Voskov, D., 2019: Parametrization Technique for Reactive Multiphase Flow and Transport, In. SIAM Geosciences. <u>https://www.pathlms.com/siam/courses/11267/sections/14643/video_presentations/128804</u>
- Snippe, J., Berg S., Ganga, K., Brussee, N., and Gdanski, R., 2019: Experimental and numerical investigation of wormholing during CO2 storage and water alternating gas injection. Int. Journal of Greenhouse Gas Control. <u>https://doi.org/10.1016/j.ijggc.2019.102901</u>
- Margert, A., 2019: Dissolution Patterns Prediction in Carbonate System, MSc Thesis, TU Delft
- Tang, J., Vincent-Bonnieu, S., & Rossen, W. R., 2019. CT coreflood study of foam flow for enhanced oil recovery: The effect of oil type and saturation. Energy, 188, 116022. <u>https://doi.org/10.1016/j.energy.2019.116022</u>
- Blinovs, A., 2019. Physics-Based Data-Driven Model for Short-Term Production Forecast, MSc thesis, Delft University of Technology.

TUDelft