
Simulation of mixed-
dimensional multiphysics

problems in PorePy
Eirik Keilegavlen

DARTS workshop

March 7, 2023

Motivation: Hydrothermal stimulation of
fractures

2006 Basel EGS Hydraulic Stimulation

• In hydraulic stimulation, seismicity is deliberately
induced to increase permeability

• Generally, ML< 3.0 (micro earthquake)

• Larger earthquakes must be avoided

Lee, K.-K. Yeo, I.-W., Lee, J.-Y. et al. (2019): Summary Report of the Korean Government Commission on Relations between the 2017 Pohang Earthquake and EGS Project. Korean Government Commission on
the Cause of the Pohang Earthquake. http://www.gskorea.or.kr/custom/27/data/Summary_Report_on_Pohang_Earthquake_March_20_2019.pdf

Motivation: Heat transport into geothermal
fields

Motivation: Multiphysics processes in
fractured porous media

Development of numerical methods:

•Fracture deformation

•Phase equilibrium

•Spatial discretizations

•Linear solvers

Applications:
• Geothermal energy from low-permeable rocks
• CO2 storage
• General coupled processes

Processes:

• Coupled flow, heat transport,
mechanical deformation

• Deformation and propagation
of fractures

• (Reactive transport)

• (Multiphase flow)

What should PorePy be able to do?

Develop mathematical models and numerical approaches for
multiphysics processes in (fractured) porous media and use the
methodology for application-relevant simulations.

Target user groups

1. PhD students and researchers

2. Other (commercial?) users

Key assumptions/requirements on users:

• Literacy in Python coding (need not be experts)

• Ability to use coding to set up simulations (no GUI)

• Ability to think in terms of equations

Building blocks
Meshing, data-structures and mixed-dimensional equations

Challenges in modeling and simulation in
fractured porous media
Geometry:

• Individual fractures have high aspect ratios
• Fracture networks have complex geometries
• Fractures may propagate

Processes:
• Non-linear multiphysics couplings
• Heterogenous governing equations
• Parameter heterogeneity

Strong interaction between geometry and processes

Ingredients of mixed-dimensional simulations

• Domain decomposition: Rock, fractures, and their intersections

• Construction of conformal meshes

• Modeling of physical processes:
• Governing equations

• Couplings between and within subdomains

• Discretize and solve

Mixed-dimensional geometry
by domain decomposition
Consider fractures and intersections as lower-
dimensional objects

Consider a subset of (large) fractures
• Upscaled fractures manifest as parameter

heterogeneity.

Divide geometry into:
• D-dimensional host medium
• (D-1)-dimensional fractures
• (D-2)- and (D-3)-dimensional intersections

Assign subdomains to each geometric object

Ω1
1

Ω1
0 Ω2

1

Ω3
1

Ω4
1

Ω1
2

Meshing of mixed-dimensional
geometries
Mesh is constrained to geometric objects of all
dimensions

Mortar meshes are placed on the interface
between subdomains grids; non-matching
meshes are permitted

Mixed-dimensional data structure: Graph with
subdomains as nodes, mortar meshes on the
graph edges

Subdomain mesh resembles that of a standard
problem

Mortar grids

Coupling of mixed-dimensional processes

Modeling principles:

1. Coupling only between subdomains with dimension
gap of 1

2. Interaction between subdomains must go through
interfaces

3. Equations on interfaces can only involve immediate
subdomain neighbors

Mixed-dimensional grid is implemented to facilitate only
these couplings

Benefits

• Framework has solid analytical foundations

• Subdomain models resemble fixed-dimensional problems
• Couplings manifests as boundary conditions and generalized source terms

• Legacy implementation of subdomain discretizations can be reused

• Interface equations and discretizations make the difference from
fixed-dimensional problems

Boon, Nordbotten, Vatne: Functional analysis and exterior calculus on mixed-dimensional geometries
Annali di Matematica Pura ed Applicata, 2021

Meshing of md-geometries

Define individual fractures

frac_1 = pp.Fracture3d(…) # give vertex coordinates

frac_2 = pp.Fracture3d(…) # give vertex coordinates

Define a fracture network

fracture_network = pp.FractureNetwork3d([frac_1, frac_2, …])

Generate a mixed-dimensional grid (mdg) via gmsh backend

mdg = fracture_network.mesh(…) # Mesh size arguments

Accessing grid information

Loop over subdomain grids

for sd in mdg.subdomains():

Get hold of subdomain data

sd_data = mdg.subdomain_data(sd)

Get subdomain grid information

sd.cell_centers

sd.nodes

…

Loop over mortar grids

for intf in mdg.interfaces():

Get interface data

intf_data = mdg.interface_data(intf)

Project to neighboring subdomains

intf.mortar_to_primary_int()

intf.secondary_to_mortar_avg()

…

Example equations: Mixed-dimensional flow

Subdomains
Conservation (matrix, fractures, fracture intersections):

𝜆𝑑: Flow in/out of higher-dimensional objects (source/sink)
𝜆𝑑−1: Flow in/out of lower-dimensional objects (boundary condition)
𝜓: Standard sources and sinks

∇𝑑 ⋅ 𝑞𝑖
𝑑 −𝜆𝑖,𝑗

𝑑 + 𝜓𝑖
𝑑 = 0

Interfaces
Coupling condition

On Γ𝑗:

𝜆𝑖,𝑗
𝑑 = 𝜅𝑖,⊥

𝑑 tr 𝑝𝑗
𝑑+1 − 𝑝𝑖

𝑑

Darcy flow (𝑑 > 0)

−𝜅𝑖,||
𝑑 ∇𝑑𝑝𝑖

𝑑 = 𝑞𝑖
𝑑

𝑞𝑗
𝑑 ⋅ 𝑛𝑗

𝑑 = 𝜆𝑖,𝑗
𝑑−1

Nordbotten, Boon, Fumagalli, K: Unified approach to discretization of flow in fractured porous media, Comp. Geosci., 2019.

Projection operators to and from mortar grids are suppressed

Implementation - pseudocode

flux = mpfa.flux * p # Flux within sd

+ mpfa.bound_flux # BC discretization

* mg.mortar_to_primary_int() # projection

* intf_flux # mortar flux

sources = source_sink # Standard source

+ mg.mortar_to_secondary_int() # project

* intf_flux

accumulation = div * flux + sources

Project pressures to the mortar grids

p_h = mg.primary_to_mortar_avg() * p

p_l = mg.secondary_to_mortar_avg() * p

Construct interface flux

intf_flux = normal_perm

* (p_h - p_l)

* mg.cell_volume

∇𝑑 ⋅ 𝑞𝑖
𝑑 −𝜆𝑖,𝑗

𝑑 + 𝜓𝑖
𝑑 = 0

𝑞𝑖
𝑑 = −𝜅𝑖,||

𝑑 ∇𝑑𝑝𝑖
𝑑

𝑞𝑗
𝑑 ⋅ 𝑛𝑗

𝑑 = 𝜆𝑖,𝑗
𝑑−1

flux accumulation

𝜆𝑖,𝑗
𝑑 = 𝜅𝑖,⊥

𝑑 tr 𝑝𝑗
𝑑+1 − 𝑝𝑖

𝑑

intf_flux

Defining mixed-dimensional
multiphysics problems

Development of PorePy – Phase I

• Initiated as a collaborative project in early 2017.

• Initial focus:
• Meshing of fractured domains

• Enable simulations of flow, transport, fracture deformation

• Philosophy: Move fast and break things
• Mesh generation and basic (single-physics) discretizations remain in reworked form

• Most other functionality implemented in 2017 was purged long ago

• A principled approach to multiphysics simulations was lacking

• The code was open sourced in May 2017 (because why not?)

Development of PorePy – Phase II

• Framework for general multiphysics couplings

• Consolidation of already covered processes (flow, transport, deformation)

• Design principle: Code should reflect underlying mathematics
• Rules for communication between subdomains and interfaces (mortar grids)
• Clearer distinction between subdomain and interface problems
• Equations should look similar on paper and in the code

• Gradual introduction of automatic differentiation

• Expansion of physical processes:
• Reactive flow
• Two-phase flow
• Fracture propagation

Design principles

• Mixed-dimensional mesh: Collection of subdomain meshes, with
projections in-between

• Finite-volume based modeling:
• Impose conservation principles
• Play around with constitutive laws

• Available discretization methods:
• Two- and multipoint flux (diffusion)
• Multipoint-stress (mechanics, poromechanics)
• Upwinding (transport)
• Variational inequalities (frictional contact mechanics)

• Tie everything together with automatic differentiation

Defining equations

Conservation laws
Single-physics:

• Mass

• Energy (or component transport)

• Momentum

Multiphysics:

• Mass + energy

• Mass + momentum (poromechanics)

• Mass + momentum + energy (thermo-
poromechanics)

Constitutive laws (arbitrary
classification)
Material laws:

• Darcy, Fourier, Hook

• Frictional contact mechanics

Fluid/rock-fluid:

• Density, viscosity

• (Relative permeability, capillary pressure)

Mechanics-related:

• Kozeny-Carman/aperture-permeability
relation

• Shear dilation (fracture displacement jump ->
aperture increase)

…

Technical details

• Implementation by mixin classes (think: special type of inheritance)
• Modularized implementation

• Extreme flexibility in combining constitutive laws

• Steep learning curve to navigate in the code base

• Precision needed in problem definitions

• Two-layer Ad formulation:
• Abstract representation of expressions as a computational graph

• Graph is translated into numerical value by forward Ad

Example: Implementation of

𝜙 = 𝜙0 +
1

𝑁
𝑝 − 𝑝0 + 𝛼 ∇ ⋅ 𝑢

class PoroMechanicsPorosity():

def matrix_porosity(self, subdomains: list[pp.Grid]) -> pp.ad.Operator:

return (self.reference_porosity(subdomains)

+ self.porosity_change_from_pressure(subdomains)

+ self.porosity_change_from_displacement(subdomains)

)

def porosity_change_from_displacement(self, subdomains) -> pp.ad.Operator:

alpha = self.biot_alpha(subdomains)

div_u = self.dispcament_divergence(subdomains)

return alpha * div_u

def porosity_change_from_pressure(self, subdomains) -> pp.ad.Operators:

…

Poromechanical fracture propagation
Dang et al, IJRMMS 2022

Field studies of injection-induced seismicity
K. Et al, Geothermics, 2021

Thermo-poromechanical fracture deformation
Stefansson et al, CMAME, 2022

Propagation by thermal contraction
Stefansson et al, TiPM, 2022

A posteriori error estimates
Varela et al, JNM 2022

Non-isothermal reactive transport
Banshoya et al, submitted

Current development mode

• Main drivers for development:
• Inclusion of new physical processes
• Improved numerical approaches motivated by weak points in physical modeling
• Large-scale maintenance (both front- and backend)

• Narrowing of main usage mode (Finite volumes, mixins, AD)
• Broadening of what can be done within that frame
• Larger parts of the code become stable

• Most development takes place at UiB
• Some external usage and contributions

• Code standardization:
• Documentation
• Tutorials
• Test-driven development

Future directions

• Additional physics to be introduced:
• Non-isothermal multiphase multicomponent flow
• (Constitutive modeling for) fracture deformation and propagation
• Tighter coupling between processes

• Enable more complex simulations:
• More robust numerical approaches:

• Splitting schemes for multiphysics
• Improved spatial discretizations

• Limit computational cost:
• Iterative block solvers for mixed-dimensional problems
• Flexibility while also shielding users from solver design

• Stay alive and relevant:
• Fight code entropy
• Contribute to getting the next project

Implementation: https://github.com/pmgbergen/porepy

	Slide 1: Simulation of mixed-dimensional multiphysics problems in PorePy
	Slide 2: Motivation: Hydrothermal stimulation of fractures
	Slide 3: Motivation: Heat transport into geothermal fields
	Slide 4: Motivation: Multiphysics processes in fractured porous media
	Slide 5: What should PorePy be able to do?
	Slide 6: Target user groups
	Slide 7: Building blocks
	Slide 8: Challenges in modeling and simulation in fractured porous media
	Slide 9: Ingredients of mixed-dimensional simulations
	Slide 10: Mixed-dimensional geometry by domain decomposition
	Slide 11: Meshing of mixed-dimensional geometries
	Slide 12: Coupling of mixed-dimensional processes
	Slide 13: Benefits
	Slide 14: Meshing of md-geometries
	Slide 15: Accessing grid information
	Slide 16: Example equations: Mixed-dimensional flow
	Slide 17: Implementation - pseudocode
	Slide 18: Defining mixed-dimensional multiphysics problems
	Slide 19: Development of PorePy – Phase I
	Slide 20: Development of PorePy – Phase II
	Slide 21: Design principles
	Slide 22: Defining equations
	Slide 23: Technical details
	Slide 24: Example: Implementation of phi equals phi sub 0 plus 1 over cap N , open paren p minus p sub 0 , , close paren plus alpha open paren dell dot u , close paren
	Slide 25
	Slide 26: Current development mode
	Slide 27: Future directions

