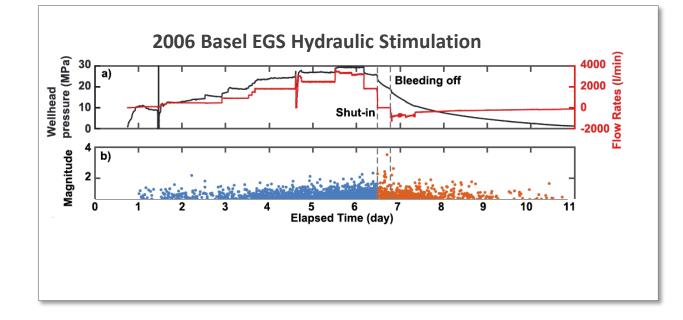
Simulation of mixeddimensional multiphysics problems in PorePy

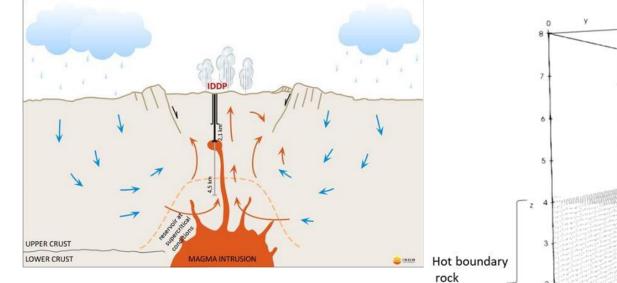
Eirik Keilegavlen

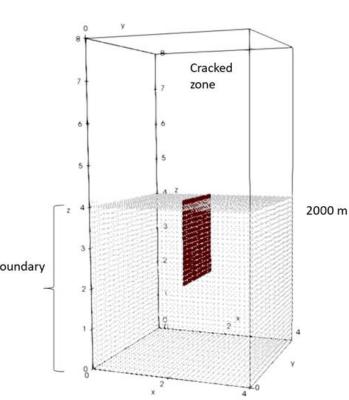
DARTS workshop

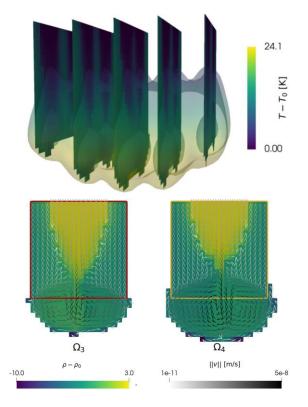

March 7, 2023

Motivation: Hydrothermal stimulation of

fractures


- In hydraulic stimulation, seismicity is deliberately induced to increase permeability
- Generally, M_L< 3.0 (micro earthquake)
- Larger earthquakes must be avoided


Science	REPORTS
	Cite as: KH. Kim et al., Science 10.1126/science.ast0081 (2018).
	ng whether the 2017 $M_{\rm w}$ 5.4 Pohang earthquake in porea was an induced event
Kwang-Hee Kii	n,** Jin-Han Ree, ³ * YoungHee Kim, ³ Sungshii Kim, ³ Su Young Kang, ³ Wooseok Seo ³
¹ Department of Geolog 02841, Republic of Kon *Corresponding autho The M _w 5.4 Pol	Science REPORTS
observation be geophysical da system (EGS)	Cite as: F. Grigoli <i>et al.</i> , Science 10.1126/science.ast2010 (2018).
magnitude of t	The November 2017 $M_{\rm w}$ 5.5 Pohang earthquake: A possible
oil and gas reco in the disposal o chance of induci oretical relation	case of induced seismicity in South Korea F. Grigoli, ²⁴ S. Cesca, ² A. P. Rinaldi, ¹ A. Manconi, ² J. A. López-Comino, ² J. F. Clinton, ¹ R. Westaway, ⁴ C. Cauzzi, ¹
tude of an induc (2, 5). The magn tonically control fault suitably or	T. Dahm, ^{2,4} S. Wiemer ⁴ "EIH-Jurch, Swis Seismological Service, Zurich, Switzerland, ⁴ GF2-Potsdam, Section 21: Physics of Earthquakes and Volcances, Potsdam, Germany, ¹ /ETH-Jurich, Department of Earth Science, Engineering Geology, Zurich, Switzerland, ⁴ Jriversity of Glaggow, School of Engineering, Glaggow, UK. ¹ Jriversity of Potsdam, Institute of Earth and Environmental Sciences, Potsdam, Germany, ⁴ Correspondentials, Earth Grandentia, Santa and A.
is also located a tion wells (6, 7) controlled by the tudes of induced (EGS) sites are 1; udes (M, 7) report, hough a much 1; control in goot Am M, 5.4 ea southeastern Ke was the most dat graph was instal tude since 1978 began. The eart tude since 1978 began. The eart induced event i event indicates event indicates than predicted I quake, at least u The Korean I 1), although it w ta plate bound ago) (22). NNE- striking normal	The Magning is a spectral problem of the product o
First release: 26 A	age in an preceded by the M_c 5.5 Gyeongiu event of September 12, 2016, which occurred - 30 km farther south on a major right-lateral fault, the Vangsan Fault, Waich continues on orthward through the Pohang area (J_2) (Fig. 1, A and B). These earthquakes are the largest recorded in South Korea since instrumental mon- itoring of seismicity began in 1903 (D). The proximity to an EGS site is a coincidence. We applied full-waveform seismological methods to re- gional and telessismic data (Fig. 1A) (ϕ) as we do not have acception of two accelerometers deployed in the epicentral had recently taken place, has led to a public debate in South Korear regarding the potential anthropogenic origin of the 2007. Rohm etails in thouse list einto wells reaching -4 km depth (ϕ). An investigation by the South Korea government is cur- rently ongoing, but we present observations that suggest a lower than typical selicity in the area which is of about


Lee, K.-K. Yeo, I.-W., Lee, J.-Y. et al. (2019): Summary Report of the Korean Government Commission on Relations between the 2017 Pohang Earthquake and EGS Project. Korean Government Commission or the Cause of the Pohang Earthquake. http://www.gskorea.or.kr/custom/27/data/Summary_Report_on_Pohang_Earthquake_March_20_2019.pdf

Motivation: Heat transport into geothermal fields

Motivation: Multiphysics processes in fractured porous media

Processes:

- Coupled flow, heat transport, mechanical deformation
- Deformation and propagation of fractures
- (Reactive transport)
- (Multiphase flow)

Applications:

- Geothermal energy from low-permeable rocks
- CO2 storage
- General coupled processes

Development of numerical methods:

- Fracture deformation
- Phase equilibrium
- Spatial discretizations
- Linear solvers

What should PorePy be able to do?

Develop mathematical models and numerical approaches for multiphysics processes in (fractured) porous media and use the methodology for application-relevant simulations.

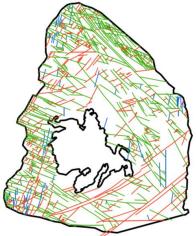
Target user groups

- 1. PhD students and researchers
- 2. Other (commercial?) users

Key assumptions/requirements on users:

- Literacy in Python coding (need not be experts)
- Ability to use coding to set up simulations (no GUI)
- Ability to think in terms of equations

Building blocks


Meshing, data-structures and mixed-dimensional equations

Challenges in modeling and simulation in fractured porous media

Geometry:

- Individual fractures have high aspect ratios
- Fracture networks have complex geometries
- Fractures may propagate

Processes:

- Non-linear multiphysics couplings
- Heterogenous governing equations
- Parameter heterogeneity

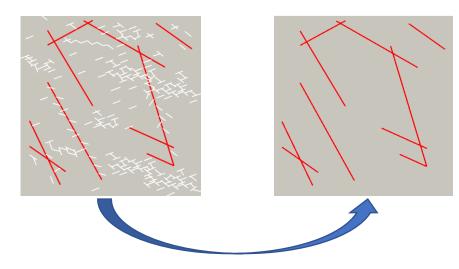
Strong interaction between geometry and processes

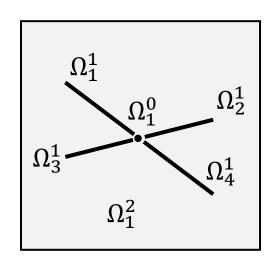
Ingredients of mixed-dimensional simulations

- Domain decomposition: Rock, fractures, and their intersections
- Construction of conformal meshes
- Modeling of physical processes:
 - Governing equations
 - Couplings between and within subdomains
- Discretize and solve

Mixed-dimensional geometry by domain decomposition

Consider fractures and intersections as lowerdimensional objects

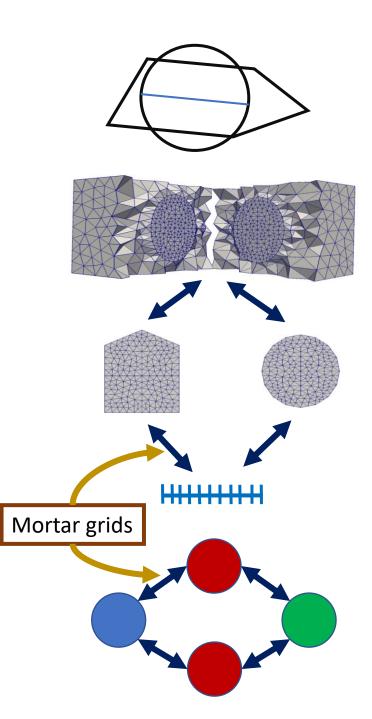

Consider a subset of (large) fractures


• Upscaled fractures manifest as parameter heterogeneity.

Divide geometry into:

- D-dimensional host medium
- (D-1)-dimensional fractures
- (D-2)- and (D-3)-dimensional intersections

Assign subdomains to each geometric object

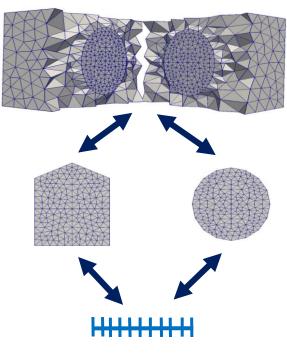

Meshing of mixed-dimensional geometries

Mesh is constrained to geometric objects of all dimensions

Mortar meshes are placed on the interface between subdomains grids; non-matching meshes are permitted

Mixed-dimensional data structure: Graph with subdomains as nodes, mortar meshes on the graph edges

Subdomain mesh resembles that of a standard problem

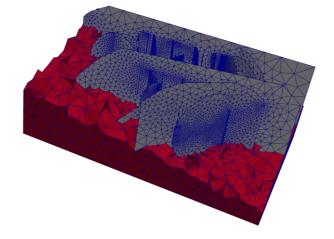


Coupling of mixed-dimensional processes

Modeling principles:

- 1. Coupling only between subdomains with dimension gap of 1
- 2. Interaction between subdomains must go through interfaces
- 3. Equations on interfaces can only involve immediate subdomain neighbors

Mixed-dimensional grid is implemented to facilitate only these couplings

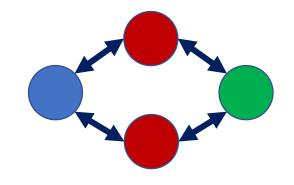


Benefits

- Framework has solid analytical foundations
- Subdomain models resemble fixed-dimensional problems
 - Couplings manifests as boundary conditions and generalized source terms
 - Legacy implementation of subdomain discretizations can be reused
- Interface equations and discretizations make the difference from fixed-dimensional problems

Boon, Nordbotten, Vatne: Functional analysis and exterior calculus on mixed-dimensional geometries Annali di Matematica Pura ed Applicata, 2021

Meshing of md-geometries




```
# Define individual fractures
frac_1 = pp.Fracture3d(...) # give vertex coordinates
frac_2 = pp.Fracture3d(...) # give vertex coordinates
```

```
# Define a fracture network
fracture_network = pp.FractureNetwork3d([frac_1, frac_2, ...])
```

Generate a mixed-dimensional grid (mdg) via gmsh backend
mdg = fracture_network.mesh(...) # Mesh size arguments

Accessing grid information

Loop over subdomain grids
for sd in mdg.subdomains():
 # Get hold of subdomain data
 sd_data = mdg.subdomain_data(sd)

Get subdomain grid information
sd.cell_centers
sd.nodes

...

Loop over mortar grids
for intf in mdg.interfaces():
 # Get interface data
 intf_data = mdg.interface_data(intf)

Project to neighboring subdomains intf.mortar_to_primary_int() intf.secondary_to_mortar_avg()

...

Example equations: Mixed-dimensional flow

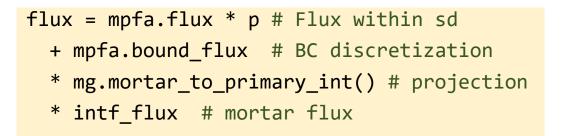
Interfaces

On Γ_j : $\lambda_{i.i}^d = \kappa_{i.\perp}^d (\operatorname{tr} p_j^{d+1} - p_i^d)$

 Ω_{h}

 Ω_{i}

Coupling condition


Subdomains Conservation (matrix, fractures, fracture intersections): $\nabla_{d} \cdot q_{i}^{d} - \sum \lambda_{i,j}^{d} + \psi_{i}^{d} = 0$ $q_{j}^{d} \cdot n_{j}^{d} = \lambda_{i,j}^{d-1}$ Darcy flow (d > 0) $-\kappa_{i,||}^{d} \nabla_{d} p_{i}^{d} = q_{i}^{d}$

 λ^{d} : Flow in/out of higher-dimensional objects (source/sink) λ^{d-1} : Flow in/out of lower-dimensional objects (boundary condition) ψ : Standard sources and sinks

Projection operators to and from mortar grids are suppressed

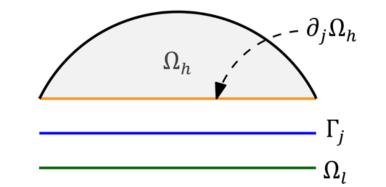
Nordbotten, Boon, Fumagalli, K: Unified approach to discretization of flow in fractured porous media, Comp. Geosci., 2019.

Implementation - pseudocode


```
sources = source_sink # Standard source
+ mg.mortar_to_secondary_int() # project
* intf_flux
```

```
accumulation = div * flux + sources
```

Project pressures to the mortar grids
p_h = mg.primary_to_mortar_avg() * p
p_l = mg.secondary_to_mortar_avg() * p


```
# Construct interface flux
intf_flux = normal_perm
 * (p_h - p_1)
```

```
* mg.cell_volume
```

flux $q_i^d = -\kappa_{i,||}^d \nabla_d p_i^d$ $q_j^d \cdot n_j^d = \lambda_{i,j}^{d-1}$ accumulation

$$\nabla_d \cdot q_i^d - \sum \frac{\lambda_{i,j}^d}{\lambda_{i,j}^d} + \psi_i^d = 0$$

 $\inf flux$ $\lambda_{i,j}^{d} = \kappa_{i,\perp}^{d} (\operatorname{tr} p_{j}^{d+1} - p_{i}^{d})$

Defining mixed-dimensional multiphysics problems

Development of PorePy – Phase I

- Initiated as a collaborative project in early 2017.
- Initial focus:
 - Meshing of fractured domains
 - Enable simulations of flow, transport, fracture deformation
 - Philosophy: Move fast and break things
 - Mesh generation and basic (single-physics) discretizations remain in reworked form
 - Most other functionality implemented in 2017 was purged long ago
 - A principled approach to multiphysics simulations was lacking
- The code was open sourced in May 2017 (because why not?)

Development of PorePy – Phase II

- Framework for general multiphysics couplings
- Consolidation of already covered processes (flow, transport, deformation)
- Design principle: Code should reflect underlying mathematics
 - Rules for communication between subdomains and interfaces (mortar grids)
 - Clearer distinction between subdomain and interface problems
 - Equations should look similar on paper and in the code
- Gradual introduction of automatic differentiation
- Expansion of physical processes:
 - Reactive flow
 - Two-phase flow
 - Fracture propagation

Design principles

- Mixed-dimensional mesh: Collection of subdomain meshes, with projections in-between
- Finite-volume based modeling:
 - Impose conservation principles
 - Play around with constitutive laws
- Available discretization methods:
 - Two- and multipoint flux (diffusion)
 - Multipoint-stress (mechanics, poromechanics)
 - Upwinding (transport)
 - Variational inequalities (frictional contact mechanics)
- Tie everything together with automatic differentiation

Defining equations

Conservation laws

Single-physics:

- Mass
- Energy (or component transport)
- Momentum

Multiphysics:

- Mass + energy
- Mass + momentum (poromechanics)
- Mass + momentum + energy (thermoporomechanics)

Constitutive laws (arbitrary classification)

Material laws:

- Darcy, Fourier, Hook
- Frictional contact mechanics

Fluid/rock-fluid:

- Density, viscosity
- (Relative permeability, capillary pressure)

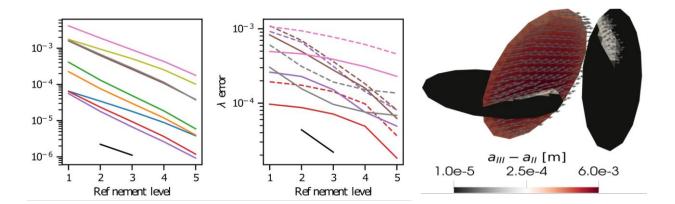
Mechanics-related:

- Kozeny-Carman/aperture-permeability relation
- Shear dilation (fracture displacement jump -> aperture increase)

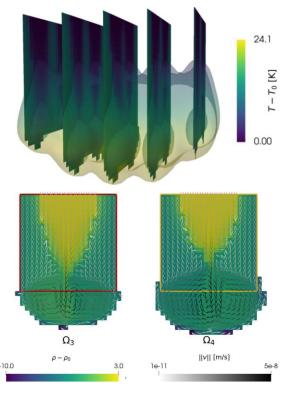
Technical details

- Implementation by mixin classes (think: special type of inheritance)
 - Modularized implementation
 - Extreme flexibility in combining constitutive laws
 - Steep learning curve to navigate in the code base
 - Precision needed in problem definitions
- Two-layer Ad formulation:
 - Abstract representation of expressions as a computational graph
 - Graph is translated into numerical value by forward Ad

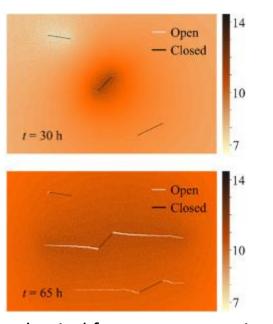
Example: Implementation of $\phi = \phi_0 + \frac{1}{N}(p - p_0) + \alpha(\nabla \cdot u)$

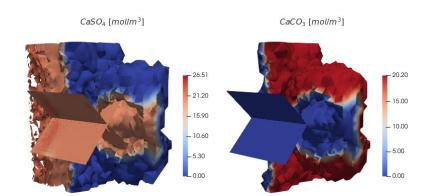

```
class PoroMechanicsPorosity():
    def matrix_porosity(self, subdomains: list[pp.Grid]) -> pp.ad.Operator:
        return (self.reference_porosity(subdomains)
        + self.porosity_change_from_pressure(subdomains)
        + self.porosity_change_from_displacement(subdomains)
        )
    def porosity_change_from_displacement(self, subdomains) -> pp.ad.Operator:
```

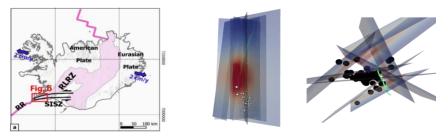
```
alpha = self.biot_alpha(subdomains)
div_u = self.dispcament_divergence(subdomains)
```

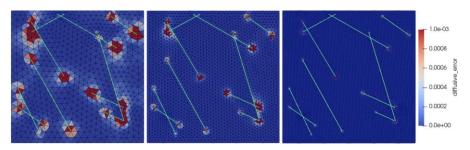

```
return alpha * div_u
```

•••


def porosity_change_from_pressure(self, subdomains) -> pp.ad.Operators:


Thermo-poromechanical fracture deformation Stefansson et al, CMAME, 2022


Propagation by thermal contraction Stefansson et al, TiPM, 2022


Poromechanical fracture propagation Dang et al, IJRMMS 2022

Non-isothermal reactive transport Banshoya et al, submitted

Field studies of injection-induced seismicity K. Et al, Geothermics, 2021

A posteriori error estimates Varela et al, JNM 2022

Current development mode

- Main drivers for development:
 - Inclusion of new physical processes
 - Improved numerical approaches motivated by weak points in physical modeling
 - Large-scale maintenance (both front- and backend)
- Narrowing of main usage mode (Finite volumes, mixins, AD)
 - Broadening of what can be done within that frame
 - Larger parts of the code become stable
- Most development takes place at UiB
 - Some external usage and contributions
- Code standardization:
 - Documentation
 - Tutorials
 - Test-driven development

Future directions

- Additional physics to be introduced:
 - Non-isothermal multiphase multicomponent flow
 - (Constitutive modeling for) fracture deformation and propagation
 - Tighter coupling between processes
- Enable more complex simulations:
 - More robust numerical approaches:
 - Splitting schemes for multiphysics
 - Improved spatial discretizations
 - Limit computational cost:
 - Iterative block solvers for mixed-dimensional problems
 - Flexibility while also shielding users from solver design
- Stay alive and relevant:
 - Fight code entropy
 - Contribute to getting the next project

Implementation: *https://github.com/pmgbergen/porepy*