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Motivation: Hydrothermal stinr

fractures

* In hydraulic stimulation, seismicity is deliberately
induced to increase permeability

* Generally, M < 3.0 (micro earthquake)

e Larger earthquakes must be avoided
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Assessing whether the 2017 M, 5.4 Pohang earthquake in

South Korea was an induced event
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The November 2017 M, 5.5 Pohang earthquake: A possible
case of induced seismicity in South Korea
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preceded by the M. 5.5 Gyeongu event of September 12, 2016,
which occurred ~30 km farther south on a major right-lateral
fault, the Yangsan Fault, which continues northward through
the Pohang area (1, 2) (Ui, 1A and B). These earthaquakes are
the largest recorded in South Korea since instrumental mon-
Itoring of selsmicity began in 1003 (2). The proximity to an
EGS site (Fig. 16), where hydraolic stimulation operations
had recently taken place, has led to o public debate in South
Korea regarding the potential hropogenic origin of the
2017 Pohang earthquake, Between early 2016 and September
207, many thousands of eubl ers of water were injected
under pressure at this site into wells reaching -4 km depth
(). An Investigation by the South Korean government 18 cur-
tently ongoing, but we present observations that suggest a
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Tistorically varving rates of selsmieity. This Teaves open the
possibility that the occurrence of earthquakes close to the
EGS site is a coineidence,

We applied full-waveform selsmological methods to re-
gional and teleseismie data (Fig, 1A) (8) as we do not have
acoess to open data from a local selsmic network (with the
exception of two accelerometers deployed in the epleentral
aveal, We analyzed 15 days of continuous waveform data eov-
ering November 1. We detected and relocated 446 events,
most with magnitude M > 2, The trend of these 46 epicenters
Indicates a WSW- strike of the faultthat ruptured in the
mainshock (Fig. 2A), We determined 37 km hypocentral
depths for most of these events (Flg, 2A), This depth 1s shal-
lower than typieal seismicity in the area which is of about
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Motivation: Heat transport into geothermal
fields
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Motivation: Multiphysics processes in
fractured porous media

Processes:

e Coupled flow, heat transport,
mechanical deformation

e Deformation and propagation
of fractures

e (Reactive transport)
e (Multiphase flow)

Applications:

 Geothermal energy from low-permeable rocks
* CO2 storage

* General coupled processes

Development of numerical methods:

e Fracture deformation
e Phase equilibrium

e Spatial discretizations
e Linear solvers




What should PorePy be able to do?

Develop mathematical models and numerical approaches for
multiphysics processes in (fractured) porous media and use the
methodology for application-relevant simulations.



Target user groups

1. PhD students and researchers
2. Other (commercial?) users

Key assumptions/requirements on users:

* Literacy in Python coding (need not be experts)

* Ability to use coding to set up simulations (no GUI)
* Ability to think in terms of equations



Building blocks

Meshing, data-structures and mixed-dimensional equations



Challenges in modeling and simulation in
fractured porous media

Geometry:
* Individual fractures have high aspect ratios
* Fracture networks have complex geometries
* Fractures may propagate

Processes:
* Non-linear multiphysics couplings
* Heterogenous governing equations
* Parameter heterogeneity

Strong interaction between geometry and processes



Ingredients of mixed-dimensional simulations

 Domain decomposition: Rock, fractures, and their intersections
e Construction of conformal meshes

* Modeling of physical processes:
* Governing equations
* Couplings between and within subdomains

 Discretize and solve



Mixed-dimensional geometry
by domain decomposition

Consider fractures and intersections as lower-
dimensional objects

Consider a subset of (large) fractures

* Upscaled fractures manifest as parameter
heterogeneity.

Divide geometry into:
* D-dimensional host medium
e (D-1)-dimensional fractures
e (D-2)- and (D-3)-dimensional intersections

Assign subdomains to each geometric object




Meshing of mixed-dimensional
geometries

Mesh is constrained to geometric objects of all
dimensions

Mortar meshes are placed on the interface
between subdomains grids; non-matching
meshes are permitted

Mixed-dimensional data structure: Graph with
subdomains as nodes, mortar meshes on the

graph edges

Subdomain mesh resembles that of a standard
problem




Coupling of mixed-dimensional processes
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Modeling principles:

1. Coupling only between subdomains with dimension
gap of 1

2. Interaction between subdomains must go through
interfaces

3. Equations on interfaces can only involve immediate
subdomain neighbors
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Mixed-dimensional grid is implemented to facilitate only
these couplings



Benefits

* Framework has solid analytical foundations

e Subdomain models resemble fixed-dimensional problems
* Couplings manifests as boundary conditions and generalized source terms
* Legacy implementation of subdomain discretizations can be reused

* Interface equations and discretizations make the difference from
fixed-dimensional problems

Boon, Nordbotten, Vatne: Functional analysis and exterior calculus on mixed-dimensional geometries
Annali di Matematica Pura ed Applicata, 2021



Meshing of md-geometries

# Define individual fractures
frac_1 = pp.Fracture3d(..) # give vertex coordinates
frac_2 = pp.Fracture3d(..) # give vertex coordinates

# Define a fracture network
fracture_network = pp.FractureNetwork3d([frac_1, frac 2, ..])

# Generate a mixed-dimensional grid (mdg) via gmsh backend
mdg = fracture_network.mesh(..) # Mesh size arguments



Accessing grid information

# Loop over subdomain grids
for sd in mdg.subdomains():
# Get hold of subdomain data
sd data = mdg.subdomain data(sd)

# Get subdomain grid information
sd.cell centers
sd.nodes

# Loop over mortar grids
for intf in mdg.interfaces():
# Get interface data
intf data = mdg.interface _data(intf)

# Project to neighboring subdomains
intf.mortar_to primary_int()
intf.secondary_to mortar_avg()



Example equations: Mixed-dimensional flow

Subdomains Interfaces
Conservation (matrix, fractures, fracture intersections): Coupling condition

On FJ

N = A d _ .. d d+1 d
qj - 1 i, /1i,j = Ki,J_(tr Pj _pi)

Darcy flow (d > 0)
-0,

do .d_ d
—K;\Vabi = q;

A%: Flow in/out of higher-dimensional objects (source/sink)

121 Flow in/out of lower-dimensional objects (boundary condition)
1: Standard sources and sinks Q,

Projection operators to and from mortar grids are suppressed

Nordbotten, Boon, Fumagalli, K: Unified approach to discretization of flow in fractured porous media, Comp. Geosci., 2019.



Implementation - pseudocode

flux = mpfa.flux * p # Flux within sd
+ mpfa.bound flux # BC discretization
* mg.mortar_to primary int() # projection
* intf_flux # mortar flux

sources = source_sink # Standard source
+ mg.mortar_to _secondary_int() # project

* intf flux

accumulation = div * flux + sources

flux accumulation

Vd'qld_z/lgj-}_lpld:o

d _ _.d d
qi = —K)\Vap;

d d __ 9d-1
4G = A

# Project pressures to the mortar grids
p_h = mg.primary_to mortar_avg() * p

p_1 = mg.secondary to _mortar_avg() * p

# Construct interface flux

intf_flux = normal_perm
* (p_h - p_1)

* mg.cell volume

intf flux

d _ d d+1  .d
A= Ki,J.(tr pj " —Di )



Defining mixed-dimensional
multiphysics problems



Development of PorePy — Phase |

* Initiated as a collaborative project in early 2017.

* Initial focus:
* Meshing of fractured domains
* Enable simulations of flow, transport, fracture deformation
* Philosophy: Move fast and break things

* Mesh generation and basic (single-physics) discretizations remain in reworked form
* Most other functionality implemented in 2017 was purged long ago

* A principled approach to multiphysics simulations was lacking

* The code was open sourced in May 2017 (because why not?)



Development of PorePy — Phase ||

* Framework for general multiphysics couplings
* Consolidation of already covered processes (flow, transport, deformation)

* Design principle: Code should reflect underlying mathematics
* Rules for communication between subdomains and interfaces (mortar grids)
* Clearer distinction between subdomain and interface problems
e Equations should look similar on paper and in the code

e Gradual introduction of automatic differentiation

e Expansion of physical processes:
* Reactive flow
* Two-phase flow
* Fracture propagation



Design principles

 Mixed-dimensional mesh: Collection of subdomain meshes, with
projections in-between

* Finite-volume based modeling:
* Impose conservation principles
* Play around with constitutive laws

* Available discretization methods:
e Two- and multipoint flux (diffusion)
* Multipoint-stress (mechanics, poromechanics)
* Upwinding (transport)
 Variational inequalities (frictional contact mechanics)

* Tie everything together with automatic differentiation



Defining equations

Constitutive laws (arbitrary

Conservation laws classification)
Single-physics: Material laws:
* Mass * Darcy, Fourier, Hook
* Energy (or component transport) * Frictional contact mechanics
« Momentum Fluid/rock-fluid:
* Density, viscosity
Multiphysics: * (Relative permeability, capillary pressure)
* Mass + energy Mechanics-related:
* Mass + momentum (poromechanics) » Kozeny-Carman/aperture-permeability
relation
* Mass + momentum + energy (thermo- o _ _
poromechanics) * Shear dilation (fracture displacement jump ->

aperture increase)



Technical details

* Implementation by mixin classes (think: special type of inheritance)
* Modularized implementation
* Extreme flexibility in combining constitutive laws
» Steep learning curve to navigate in the code base
* Precision needed in problem definitions

e Two-layer Ad formulation:
* Abstract representation of expressions as a computational graph
e Graph is translated into numerical value by forward Ad



Example: Implementation of
1
¢ =¢o+ 5@ —po)+alV-w

class PoroMechanicsPorosity():
def matrix_porosity(self, subdomains: list[pp.Grid]) -> pp.ad.Operator:
return (self.reference_porosity(subdomains)
+ self.porosity change from _pressure(subdomains)
+ self.porosity change from_displacement(subdomains)

def porosity_ change from displacement(self, subdomains) -> pp.ad.Operator:
alpha = self.biot _alpha(subdomains)
div_u = self.dispcament_divergence(subdomains)
return alpha * div_u

def porosity change from pressure(self, subdomains) -> pp.ad.Operators:
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Current development mode

* Main drivers for development:
* Inclusion of new physical processes
* Improved numerical approaches motivated by weak points in physical modeling
 Large-scale maintenance (both front- and backend)

* Narrowing of main usage mode (Finite volumes, mixins, AD)
* Broadening of what can be done within that frame
 Larger parts of the code become stable

* Most development takes place at UiB
* Some external usage and contributions

e Code standardization:
* Documentation
e Tutorials
* Test-driven development



Future directions

* Additional physics to be introduced:
* Non-isothermal multiphase multicomponent flow
» (Constitutive modeling for) fracture deformation and propagation
* Tighter coupling between processes

* Enable more complex simulations:

* More robust numerical approaches:
 Splitting schemes for multiphysics
* Improved spatial discretizations
* Limit computational cost:
* [terative block solvers for mixed-dimensional problems
 Flexibility while also shielding users from solver design

e Stay alive and relevant:
* Fight code entropy
* Contribute to getting the next project

Implementation: https://github.com/pmgbergen/porepy
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