

RAND-based Chemical and Phase Equilibrium Calculation

Wei Yan Center for Energy Resources Engineering, DTU Chemistry Email: <u>weya@kemi.dtu.dk</u>

November 12, 2024

Outline

General discussion about phase equilibrium calculation

- RAND formulation and its derivation
- Examples of RAND-based calculations
 - Modified RAND
 - Vol-RAND
 - Other flash specifications
 - Chemical and phase equilibrium (CPE)
 - "Open" systems
 - Saturation point and phase envelope
 - Geochemical calculations

Summary

Phase equilibrium calculation (PEC)

- T, P
- Single-stage phase equilibrium calculation (PEC)
 - To determine equilibrium phase compositions and amounts at certain conditions
 In general, it covers multiphase and chemical reactions as well
 - PEC: An essential and recurrent element in the simulation of chemical processes
 - Standalone equilibrium calculations
 - Multistage—coupled with material and energy balances...
 - Chemical engineering: distillation, adsorption, and extraction
 - Subsurface processes: reservoir simulation, CO₂ sequestration...

Examples

0 ...

- Two-phase TP-Flash: $(\mathbf{z}, T, P) \rightarrow (\beta, \mathbf{x}, \mathbf{y})$
- Bubble point pressure: ($\mathbf{x}=\mathbf{z}, \beta=1, T$) → (*P*, \mathbf{y})

Michelsen's PEC classification

- Flash specifications—Minimization of a thermodynamic state function
 - In addition to TP-flash, (P, H), (P, S), (T, V), and (U, V) flash
 - Extension to multiphase and to reactive systems (Paterson et al.)
 - Extension to open systems: "Open system" flash (Medeiros et al.)
- Phase fraction specifications (β specifications)
 - Bubble P, Bubble T, Dew P, Dew T
 - \mathbf{O} specifications not equal to 0 or 1
 - Phase envelope construction—a series of saturation points

Others

- Indirect specifications: Critical points, cricondentherm, cricondenbar

Michelsen, M.L. Phase equilibrium calculations. What is easy and what is difficult? Computers Chem. Engng. 17 (1993)

PEC-related research in our group since 2014

- Saturation pressure for reactive mixtures (RAND-based)
- PEC in porous media (involving capillarity/adsorption)

DTU

 Ξ

Conventional multiphase flash formulation

For a non-reacting system with C components and F phases, the classical second-order approach uses the following formulation:

$$\left(\frac{\partial \boldsymbol{\mu}_j}{\partial \boldsymbol{n}_j} - \frac{\partial \boldsymbol{\mu}_{\text{ref}}}{\partial \boldsymbol{n}_j}\right) \Delta \boldsymbol{n}_j = \boldsymbol{\mu}_j - \boldsymbol{\mu}_{\text{ref}} \qquad j \neq \text{ref}$$

• It solves C(F-1) equations where the independent variables \mathbf{n}_i (*j*≠ref) are updated iteratively.

Pros:

- Abundant implementation experiences
- Works well particularly for two-phase flash

Cons:

- Hessian for multiphase flash not well scaled for Trust Region—Empirical modifications used instead.
- Dependent phase "ref" should be component dependent to handle round off errors—Complex Hessian for multiphase flash and significant bookkeeping.
- Extension to reacting systems is challenging.

RAND-based multiphase flash formulation

- From RAND to modified RAND:
 - RAND is a non-stoichiometric method for chemical reaction equilibrium
 - Named after the affiliation of White et al. (the RAND corporation), who proposed the original RAND in 1958
 - Original RAND is for single-phase chemical equilibrium of an ideal mixture
 - Modified RAND and its variations are for multiphase non-ideal mixtures
 - Key ideas:
 - $_{\odot}$ Use (elemental) chemical potentials to express mole fractions/numbers
 - \circ Second order convergent algorithms

Paterson et al., SPE J. 2018, 23(2), 535-549; Tsanas et al., Ind. Eng. Chem. Res. 2017, 56, 11983-11995.

• Derivation in brief: A reacting system with C components, F phases, R reactions, E elements (E = C - R)

Gibbs energy minimization using Lagrange multipliers:

$$\mathcal{L}(\mathbf{n},\boldsymbol{\lambda}) = \sum_{j=1}^{F} \mathbf{n}_{j}^{T} \frac{\boldsymbol{\mu}_{j}}{RT} - \boldsymbol{\lambda}^{T} \left(\mathbf{A} \sum_{j=1}^{F} \mathbf{n}_{j} - \mathbf{b} \right)$$

- **A** $E \times C$ formula matrix
- **b** moles of elements in feed
- μ_i chemical potentials in phase j
- λ Lagrange multipliers/elemental potentials

Equilibrium: $\frac{\partial \mathcal{L}}{\partial n_{i,j}} = \frac{\mu_{i,j}}{RT} - \sum_{j=1}^{E} A_{ki} \lambda_k = 0$ Mass balance: $\frac{\partial \mathcal{L}}{\partial \lambda_k} = -\sum_{i=1}^{C} A_{ik} \sum_{j=1}^{F} n_{i,j} + b_k = 0$

- **CF** equations
- *E* equations (*C* equations if no reactions)

• Linearization of chemical potential μ in terms of mole numbers **n** (and T & P if T & P vary)

$$\frac{1}{RT}\left(\boldsymbol{\mu}_{j} + \frac{\partial \boldsymbol{\mu}_{j}}{\partial \boldsymbol{n}_{j}} \Delta \boldsymbol{n}_{j} + \boldsymbol{\mu}_{T,j} \Delta T + \boldsymbol{\mu}_{P,j} \Delta P\right) - \mathbf{A}^{T} \boldsymbol{\lambda} = 0 \quad \text{with } \boldsymbol{\mu}_{T,j} = \frac{\partial \boldsymbol{\mu}_{j}}{\partial T} \text{ and } \boldsymbol{\mu}_{P,j} = \frac{\partial \boldsymbol{\mu}_{j}}{\partial P}$$

Derivation in brief:

 \mathbf{O} Expression of $\Delta \mathbf{n}_i$ using elemental chemical potentials λ

$$\Delta \mathbf{n}_{j} = \mathbf{x}_{j} \Delta \beta_{j} + \beta_{j} \mathbf{M}_{j} \left[\mathbf{A}^{T} \boldsymbol{\lambda} - \frac{1}{RT} \left(\boldsymbol{\mu}_{j} + \boldsymbol{\mu}_{T,j} \Delta T + \boldsymbol{\mu}_{P,j} \Delta P \right) \right]$$

where $\mathbf{M}_{j} = \mathbf{m}_{j}^{-1}$ and $m_{p,q,j} = \beta_{j} \left(\frac{1}{RT} \frac{\partial \mu_{p,j}}{\partial n_{q,j}} + 1 \right) = \frac{\delta_{p,q}}{x_{p,j}} + \beta_{j} \frac{\partial \ln \phi_{p,j}}{\partial n_{q,j}}$

• The first *E* equations: Substitution of $\Delta \mathbf{n}_j$ into the *E* linearized mass balance equations $\mathbf{A}\sum_{j=1}^{I} \Delta \mathbf{n}_j = 0$ gives

$$\mathbf{A}\left(\sum_{j=1}^{F}\boldsymbol{\beta}_{j}\mathbf{M}_{j}\right)\mathbf{A}^{T}\boldsymbol{\lambda}+\mathbf{A}\mathbf{X}\boldsymbol{\Delta}\boldsymbol{\beta}=\mathbf{A}\left(\sum_{j=1}^{F}\boldsymbol{\beta}_{j}\mathbf{M}_{j}\frac{\boldsymbol{\mu}_{j}}{RT}\right)$$

X $C \times F$ matrix of phase mole fractions $x_{i,j}$

Derivation in brief:

• The last \mathbf{F} equations: Multiply the $\Delta \mathbf{n}_j$ expression by $\mathbf{1}^T$ and utilize the Gibbs-Duhem equation

$$\mathbf{X}^T \mathbf{A}^T \mathbf{\lambda} = \mathbf{g}$$
 where $g_j = \frac{1}{RT} \sum_{i=1}^C x_{i,j} \mu_{i,j}$

Final modified RAND equations:

 \circ *E*+*F* equations for reacting mixtures

$$\begin{pmatrix} \mathbf{A} \sum_{j=1}^{F} \boldsymbol{\beta}_{j} \mathbf{M}_{j} \mathbf{A}^{T} & \mathbf{A} \mathbf{X} \\ \mathbf{(A} \mathbf{X})^{T} & \mathbf{0} \end{pmatrix} \begin{pmatrix} \boldsymbol{\lambda} \\ \Delta \boldsymbol{\beta} \end{pmatrix} = \begin{pmatrix} \mathbf{A} \sum_{j=1}^{F} \boldsymbol{\beta}_{j} \mathbf{M}_{j} \frac{\boldsymbol{\mu}_{j}}{RT} \\ \mathbf{g} \end{pmatrix}$$

 \circ *C*+*F* equations for non-reacting mixtures

$$\begin{pmatrix} \sum_{j=1}^{F} \boldsymbol{\beta}_{j} \mathbf{M}_{j} & \mathbf{X} \\ \mathbf{X}^{T} & \mathbf{0} \end{pmatrix} \begin{pmatrix} \boldsymbol{\lambda} \\ \Delta \boldsymbol{\beta} \end{pmatrix} = \begin{pmatrix} \sum_{j=1}^{F} \boldsymbol{\beta}_{j} \mathbf{M}_{j} \ln \mathbf{f}_{j} \\ \mathbf{g} \end{pmatrix}$$
 where $g_{j} = \sum_{i=1}^{C} x_{i,j} \ln f_{i,j}$

$$\begin{pmatrix} \mathbf{A} \sum_{j=1}^{F} \boldsymbol{\beta}_{j} \mathbf{M}_{j} \mathbf{A}^{T} & \mathbf{A} \mathbf{X} \\ \mathbf{(A} \mathbf{X})^{T} & \mathbf{0} \end{pmatrix} \begin{pmatrix} \boldsymbol{\lambda} \\ \Delta \boldsymbol{\beta} \end{pmatrix} = \begin{pmatrix} \mathbf{A} \sum_{j=1}^{F} \boldsymbol{\beta}_{j} \mathbf{M}_{j} \frac{\boldsymbol{\mu}_{j}}{RT} \\ \mathbf{g} \end{pmatrix}$$

Advantages:

- Quadratically convergent
- Material balance satisfied at each step
- Gibbs energy can be monitored
- No singularity close to the phase boundary
- All phases and all components are treated equally, simple to implement, no book-keeping
- For non-reacting flash, it solves C+F equations instead of C(F-1) equations (conventional method).
- Most attractive feature: Same formulation for phase & chemical equilibrium
 - \circ It has *E*+*F* equations for reacting systems—A "classical" stoichiometric formulation needs *CF*-*E* equations.
 - RAND particularly suitable with many phases and many reactions.

DTU

=

Variation I: Using volume-based thermodynamics

Vol-RAND using volume-based thermodynamics

Linearization of chemical potentials:
$$\boldsymbol{\mu}_{j} + \mathbf{A}_{nn,j}\Delta\mathbf{n}_{j} + \mathbf{A}_{nV,j}\Delta V_{j} - \mathbf{A}^{T}\hat{\boldsymbol{\lambda}} = 0$$
 $\hat{\boldsymbol{\lambda}} = \boldsymbol{\lambda}RT$
Linearization of pressure: $-P_{j} + \mathbf{A}_{nV,j}^{T}\Delta\mathbf{n}_{j} + \mathbf{A}_{VV,j}\Delta V_{j} + P^{spec} = 0$

• Expression of $\Delta \mathbf{n}_i$ is straight forward:

$$\Delta \mathbf{n}_{j} = \mathbf{A}_{nn,j}^{-1} \left(\mathbf{A}^{T} \boldsymbol{\lambda} - \boldsymbol{\mu}_{j} \right) + \boldsymbol{\rho}_{j} \Delta V_{j} \qquad \qquad \boldsymbol{\rho}_{j} = \mathbf{n}_{j} / V_{j}$$

• Final formulation: E+F equations in $(\lambda, \Delta V)$, where ΔV is the change in phase volumes.

Note: A in **black** color for the vector/matrix of Helmholtz energy derivatives

A in red color for the formula matrix

Variation II: Extension to other specifications

RAND for (V,T), (P,H), (P,S), (U,V) and (V,S) flash

• Additional constraints (one or two): $S - S^{spec} = 0$, $H - H^{spec} = 0$, $V - V^{spec} = 0$, $U - U^{spec} = 0$

Linearization of these constraints and simplifications result in two additional equations:

$$\frac{C_p}{RT^2} \Delta T - \frac{1}{RT} \frac{\partial V}{\partial T} \Delta P - \sum_{j=1}^F \mathbf{e}_j^T \Delta n_j = r_T$$
where $\mathbf{e}_j = \mathbf{\mu}_{T,j} / RT$, $\gamma_j = \mathbf{\mu}_{P,j} / RT$, and
$$-\frac{1}{RT} \frac{\partial V}{\partial T} \Delta T - \frac{1}{RT} \frac{\partial V}{\partial P} \Delta P - \sum_{j=1}^F \gamma_j^T \Delta n_j = r_P$$
 \mathbf{r}_T and r_P depend on specifications.

• Final formulation: A common Jacobian of size E+F+1 or E+F+2 (*E* replaced by *C* for non-reacting systems).

$$\begin{pmatrix} \mathbf{A} \sum_{j=1}^{F} \beta_{j} \mathbf{M}_{j} \mathbf{A}^{T} & \mathbf{A} \mathbf{X} & -\mathbf{t} & -\mathbf{q} \\ (\mathbf{A} \mathbf{X})^{T} & \mathbf{0} & \mathbf{s}_{1} & \mathbf{s}_{2} \\ -\mathbf{t}^{T} & \mathbf{s}_{1}^{T} & C_{x} & \Omega \\ -\mathbf{q}^{T} & \mathbf{s}_{2}^{T} & \Omega & \Psi \end{pmatrix} \begin{pmatrix} \boldsymbol{\lambda} \\ \Delta \boldsymbol{\beta} \\ \Delta T \\ \Delta P \end{pmatrix} = \begin{pmatrix} \mathbf{A} \sum_{j=1}^{F} \beta_{j} \mathbf{M}_{j} \frac{\mathbf{\mu}_{j}}{RT} \\ \mathbf{g} \\ r_{T} - \sum_{j=1}^{F} \beta_{j} \mathbf{e}_{j}^{T} \mathbf{M}_{j} \frac{\mathbf{\mu}_{j}}{RT} \\ r_{p} - \sum_{j=1}^{F} \beta_{j} \boldsymbol{\gamma}_{j}^{T} \mathbf{M}_{j} \frac{\mathbf{\mu}_{j}}{RT} \end{pmatrix}$$

Performance of modified-RAND and vol-RAND

• 17-component containing H_2O , CO_2 , and H_2S (up to 3 phases)

Equation of state	Two-phase flash			
	Conventional method	Modified RAND	Vol-RAND	
SRK	1	2.03	2.00	
CPA1	2.47	4.05	2.11	
CPA2	4.63	6.62	2.38	
	Three-phase flash			
SRK	2.98	2.89	2.88	
CPA1	5.41	5.40	3.08	
CPA2	8.65	8.45	3.50	

CPA1: 2 types of sites for H_2O

CPA2: 5 types of sites for H_2O , H_2S and CO_2 (solvating)

Paterson, PhD thesis (2017)

5-componet mixture: C₁, C₂, C₃, H₂S, CO₂ (up to 4 phases)

Fig. 4.3 Ratio of CPU time for the RAND method against the conventional method. The RAND method scales better as the number of phases increases.

Multiphase flash with different specifications

Modified RAND used for 5-component mixture (C₁, C₂, C₃, H₂S, CO₂, up to 4 phases)

Paterson et al., FPE **2018**, 458, 288-299

8% needs Q-function

Vol-RAND in slimtube simulation

It avoids solving the density roots and is particularly suitable to complex equation of state.

3-phase slimtube, 4C scheme water

3D reservoir simulation

Computation time	TP-based (s)	TV-based (s)
Full simulation	136.5	108.6
Flash	54.1	36.5
System of equations	37.5	45.9

Paterson et al. (2018) ECMOR

Chemical and phase equilibrium (CPE) calculation

A combined non-stoichiometric algorithm: A "successive substitution" algorithm + RAND

Successive substitution algorithm

Combined algorithm

Tsanas et al., Chem. Eng. Sci. 2017, 174, 112-126.

Tsanas et al., Ind. Eng. Chem. Res. 2017, 56, 11983-11995

RAND-based CPE calculation

System	С	R	F
Esterification of acetic acid/ethanol	4	1	2
Esterification of acetic acid/1-butanol	4	1	2
MTBE synthesis	4	1	2
TAME synthesis	5	1	2
Propene hydration	3	1	2
Cyclohexane synthesis	3	1	2
Formaldehyde/water	4	2	2
<i>p</i> - and <i>m</i> -xylene separation	6	2	2
Methanol synthesis	7	2	2
Transesterification of triglycerides with methanol	9	5	≤3

Transesterification of triglycerides with methanol

Tsanas et al., Chem. Eng. Sci. 2017, 174, 112-126.

Tsanas et al., Ind. Eng. Chem. Res. 2017, 56, 11983-11995

RAND-based CPE calculation

	Component	Element	
1	$\rm CH_4O$	CHO	
2	$\mathrm{C_3H_5O_3(R_1)_2R_2}$	Η	
3	$\mathrm{C_3H_6O_3(R_1)_2}$	$R_1 C_{16}H_3$	1 <mark>0</mark>
4	$\mathrm{C_3H_6O_3R_1R_2}$	$R_2 C_{18}H_3$	1 <mark>0</mark>
5	$\mathrm{C_3H_7O_3R_1}$		
6	$\mathrm{C_3H_7O_3R_2}$		
7	$\mathrm{C_{3}H_{8}O_{3}}$		
8	$\mathrm{CH}_3\mathrm{OR}_1$		
9	$\mathrm{CH}_3\mathrm{OR}_2$		
$H_2C = OR_1$	$H_{2}C - OR_{1}$ $H_{C} - OR_{1} + CH_{3}C$ $H_{C} - OR_{1} - R_{1}OC$ $- R_{1}OC$ $+ CH_{3}OH + H_{2}C - OH$	$\begin{array}{c} \begin{array}{c} \begin{array}{c} H_{2}C - OR_{1} \\ H_{2}C - OH \\ H_{2}C - OH \end{array} \\ \begin{array}{c} H_{2}C - OH \\ H_{2}C - OH \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ $	7 ≫ H ₂ C−OH
$HC - OR_1$ $H_2C - OR_2$	reactio	ons	$H\dot{C} - OH$ $H_2\dot{C} - OH$
2 - 2	$\begin{array}{c} \text{reaction} \\ \hline \\ $	$ \begin{array}{c} H_2C - OH \\ \downarrow \\ H_3 \end{array} \begin{array}{c} H_2C - OH \\ H_2C - OH \\ H_2C - OR_2 \end{array} $	

Figure 4.15: Equilibrium in PPOFAG transesterification with methanol and PPOFAG/methanol ratio equal to 1:3 at 1 atm: (a) phase fractions [vapor (—), ester-rich liquid (—), glycerol-rich liquid (—)], (b, c, d) mole fractions [methanol (—), PPOFAG (—), PPFADIG (—), POFADIG (—), PFAMONOG (—), OFAMONOG (—), glycerol (—), PFAME (—), OFAME (—)].

DTU

=

RAND and CPE involving electrolytes

Speciation and some mineral reactions lead to many equilibrium reactions

Electroneutrality not a problem—Implicitly satisfied*

• Geochemical reaction with multiple mineral phases ($R = 11, C = 21, F \le 5$)

Same results as PHREEQC's

But much faster

Table 4

CPU time to obtain the equilibrium solution of the systems examined (SSA: successive substitution algorithm, CA: combined algorithm, processor: Intel[®]Core[™] i7-7600U CPU@ 2.80 GHz).

System	T (K)	p (atm)	SSA (ms)	CA (ms)
NH ₃ /CO ₂	373	10	0.398	0.391
$CO_2/CaCl_2/CaCO_3$	393.15	250	1.223	1.305
Three-mineral system	298.15	1	0.916	4.650
Three-mineral system PHREEQC 179 ms (195x slower)				

Possibility for including gas-oil equilibrium

Tsanas et al., Fluid Phase Equilibria 2019, 482, 81-98.

* For more than one phase w/ electrolytes, see Tsanas, Mougin & de Hemptinne, CES (2021)

CERE, DTU Chemistry

 $H_2O \rightleftharpoons H^+ + OH^ \mathrm{CO}_3^{2-} + \mathrm{H}^+ \rightleftharpoons \mathrm{HCO}_3^ \mathrm{CO}_3^{2-} + 2\mathrm{H}^+ \rightleftharpoons \mathrm{CO}_2 + \mathrm{H}_2\mathrm{O}$ $\mathrm{H}^{+} + \mathrm{SO}_{4}^{2-} \rightleftharpoons \mathrm{HSO}_{4}^{-}$ $H_2O + Mg^{2+} \rightleftharpoons H^+ + MgOH^+$ $CO_3^{2-} + Mg^{2+} \rightleftharpoons MgCO_3$ $H_4SiO_4 \rightleftharpoons H^+ + H_3SiO_4^ H_4SiO_4 \rightleftharpoons 2H^+ + H_2SiO_4^{2-}$ $Calcite \Rightarrow CO_3^{2-} + Ca^{2+}$ $Dolomite \rightleftharpoons 2CO_3^{2-} + Ca^{2+} + Mg^{2+}$ $2H_2O + Quartz \rightleftharpoons H_4SiO_4$

Flash for "open" systems—not just for RAND

- Do we need flash for an open system?
 - Equilibrium where one or several chemical potentials are fixed: "membrane" flash
 - Geochemical calculations at constant partial pressure or at constant pH

- How to solve the problem?
 - Legendre transform—to define new state function for the problem
 - Michelsen's Q-function—to solve state function based "flash"

Essentially, a further extension of Michelsen's PH, PS, TV, UV, VS flash (1999) to "open" systems and to reactive systems (e.g., using RAND). The algorithm ensures convergence to a unique solution.

Examples for flash for open systems

1.000

0.875

0.750

0.625

0.500

0.375

0.250

0.125

0.000

Phase equilibrium

Psat of pure C1

T_{sat} at Infspec

Prat at Infspec

5-comp. hydrocarbon mixture phase diagram at methane fugacity=0.6 MPa

(a) β^v

DTU

Ħ

6

5

P/MPa

Medeiros et al. AIChE J. **2021**, 67, e17050

Propene hydration reaction

4-comp. (water, propene, propanol, and inert propane) 2-phase reaction at fixed water chemical potential

(c) Vapor Mole Fraction

 $H_2 \,O + C_3 \,H_6 \Longrightarrow C_3 \,H_7 \,OH$

Saturation point and phase envelope for reactive systems

Important to get an overview of reactive systems' phase boundaries: CCS systems, electrolyte and geochemical systems, production of chemicals

Solution method: Michelsen's phase line tracing (1980) + RAND formulation + Element K-values (lnKe)

$$\mathbf{J}_{(E+4)\times(E+4)}\left(\Delta\lambda,\Delta\beta_{1},\Delta\beta_{2},\Delta T,\Delta P\right)^{T}=\mathbf{R}_{(E+4)\times 1}$$

• β_j not conserved—use $\beta_j^r = \beta_j / \sum \beta_j$ and $\alpha_j^r = \alpha_j / \sum \alpha_j$, α_j is total moles of elements in phase *j*

 \bullet Use $\ln \mathbf{K}^{e}$ in the specification equation, and estimate its change using the RAND vector \mathbf{X}^{RAND}

Example 3. Phase envelope: Alkene hydration

- PT phase envelope for the alkene hydration system
 - 4 components: water, propene, 1-propanol, propane (inert)
 - Reaction:

DTU

 $H_2O+C_3H_6 \rightleftharpoons C_3H_7OH$

- 3 elements: propene, water, and propane
- Phase envelope at different α and β^r specifications at initial load of (1, 1, 0, 0.8) moles

Example 3. Phase envelope: Alkene hydration

PT phase envelope for the alkene hydration system
 A detailed look at "*K*-factors"

 $H_2O+C_3H_6 \rightleftharpoons C_3H_7OH$

Influence of the inert component:

 $b_3 = 0.01, 0.2, 0.4, 0.8, 1.5, 3.0, 6.0$

DTU

=

Example 2. Tx diagram for MgCl₂-water

- SLE diagram for electrolyte MgCl₂-water
 - Many possible solid phases: Ice, MgCl₂·12H₂O, MgCl₂·8H₂O, MgCl₂·6H₂O
 - Pitzer model in PHREEQC
 - Precipitation and speciation reactions:

$$MgCl_{2}(H_{2}O)_{6}(s) \rightleftharpoons Mg_{(aq)}^{2+} + 2Cl_{(aq)}^{-} + 6H_{2}O_{(l)}$$

$$MgCl_{2}(H_{2}O)_{8}(s) \rightleftharpoons Mg_{(aq)}^{2+} + 2Cl_{(aq)}^{-} + 8H_{2}O_{(l)}$$

$$MgCl_{2}(H_{2}O)_{12}(s) \rightleftharpoons Mg_{(aq)}^{2+} + 2Cl_{(aq)}^{-} + 12H_{2}O_{(l)}$$

$$H_{2}O_{(l)} \rightleftharpoons OH_{(aq)}^{-} + H_{(aq)}^{+}$$

$$Mg_{(aq)}^{2+} + H_{2}O_{(l)} \rightleftharpoons MgOH_{(aq)}^{+} + H_{(aq)}^{+}$$

• Four elements: OH^- , H^+ , Mg^{2+} , Cl^- • Saturation point calculation: $\alpha_g = \alpha_g^r = 0$

DTU

RAND-based geochemical calculation

Similar functions to PHREEQC, but more robust and efficient
 PT flash / Flash at constant P_{CO2} / Flash at constant pH

A system with silicon-containing minerals: 22 components (13 aqueous species and 9 possible solid species) and 16 reactions (7 in brine and 9 mineral formation)

Metal containing species varies with P_{CO2} (left) and pH (right)

DTU

Ħ

Thermodynamic analysis of salt precipitation

- Long-time injection of dry CO₂ can result in salt precipitation near the well
 - A "ternary" diagram to represent CO₂+water+salt
 - ID slimtube simulation: The composition path can be shown in the plot

 $\rm CO_2\text{-}NaCl\text{-}H_2O$ diagram (brine & solid) and composition path

Medeiros et al., TCCS (2021)

Inlet

Propagation of different zones from 1-D sim.

A,B: initial and undersaturated; C: two-phase; D: 3-phase halite; E: dry-out

DTU

Outlet

 $\phi \frac{\partial}{\partial t} \left(\sum_{i=1}^{N_F} x_{ij} \rho_j s_j \right) + \frac{\partial}{\partial x} \left(\nu \sum_{i=1}^{N_F} x_{ij} \rho_j f_j \right) = 0$

Thermodynamic analysis of salt precipitation

Real brine

Real NaCl 1.0 0.8 Е D 0.6 D Zones Zones × С С 0.4 B В 0.2 А Α 0.0 2.5 3.0 1.0 1.5 0.0 0.5 2.0 2.5 3.0 τ

 CO_2 -Salts-H₂O diagram (brine phase) and composition path

Minerals: Halite, Carnallite, Bischoffite, Kieserite Propagation of different zones from 1-D sim.

A,B: initial and undersaturated; C: two-phase; D, E: V+L+solids; F: dry-out

Medeiros et al. TCCS (2021)

General non-isothermal compositional simulator

Mass balance

$$\frac{\partial}{\partial t} \left(\phi \sum_{j=1}^{N_P} x_{i,j} \rho_j S_j \right) + \nabla \cdot \left(\sum_{j=1}^{N_P} x_{i,j} \rho_j \mathbf{u}_j \right) + q_j - \sum_{q=1}^{N_P} \nu_{i,q} r_q^{\text{eq}} - \sum_{w=1}^{N_K} \nu_{i,w} r_w^{\text{kin}} = 0$$

- Energy balance
- Phase (and chemical) equilibrium
- Other constitutive relations

General non-isothermal compositional simulator

- RAND-based compositional simulator developed by Paterson et al.
 - RAND-based flash
 - Multiphase equilibrium
 - Advanced EoS models (e.g., CPA)
 - Example simulations
 - Gas injection
 - Depletion
 - Water flooding
 - SAGD (non isothermal)

SAGD (Steam Assisted Gravity Drainage) simulation

A platform for future development, e.g., for CO₂ sequestration simulation with multiple phases (gas, oil, water, mineral phases) and geochemical reactions, and for geothermal simulation.

Oil sat. 0 days

DTU = Flowchart for comp. simulation with reaction Initialization *z* and P RAND flash for component distribution and sensitivities Update accumulation, convection, source and reactive terms Construct Jacobian J and residuals Ψ Update X using NR Ν **Converged?** $J\Delta X + \psi = 0$ t=t+∆t **X** includes **z** and *P* for all grid blocks

3D simulation of CO₂ sequestration

8000 m x 8000 m x 200 m, loosely based on Ghanbari et al. (2006)

- Chemical reactions are important, interesting, but challenging to describe—A PEC area not fully explored.
- RAND provides a framework that can replace the classical formulation for PEC. The new framework is especially advantageous in multiphase equilibrium involving many reactions.
- RAND can provide an engine for future simulation in the CCS-related area and other areas involving reactions.
- Classical formulation will still be used, especially in PEC without reactions—The choice of solution algorithms depend on many factors in practice.