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PorePy

e Open-source code developed at UiB
github.com/pmgbergen /porepy Q%
e Mixed-dimensional simulations using domain Qg Q%
decomposition of rock, fractures and intersections ./
Q%/ \Ql
e Modeling physical processes using governing 4
equations within subdomains Q%

e Coupling across interfaces between subdomains
with dimension gap 1 Schematic representation of rock (dim D), fractures (dim D-1)

and intersections (dim D-2)
e Mixed-dimensional domain is a graph, with
subdomains as nodes and interfaces as edges

e Meshing on individual subdomains and interfaces
resembles that of a standard problem.

I
e Subdomain models resemble fixed-dimensional Q
problems. 1
) ) Higher-dimensional subdomain Q coupled via interface I; to
e Coupling manifests as BC or source terms lower-dimensional subdomain 2.
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https://github.com/pmgbergen/porepy

PorePy

e Interface equations and discretizations

make the difference from 241
fixed-dimensional problems .

e Finite-volume based modeling (MPFA, 5
MPSA, Upwinding) "
0.00

e Translation of general multiphysics
model to numerical format using
automatic differentiation adapted to
mixed_dimensional Setting Stefansson et al. Numerical Modelling of Convection-Driven

Cooling, Deformation and Fracturing of Thermo-Poroelastic
Media. TiPM 140, 371-394 (2021).

Initial

Varela et al. A posteriori error estimates for hierarchical
mixed-dimensional elliptic equations. JNM 31 (4), 247-280
(2023).

Dang et al. Two-level simulation of injection-induced fracture slip and
wing-crack propagation in poroelastic media. IJRMMS 160, 105248 (2022).




Motivation

Geothermal System as a Compositional System

Geothermal reservoirs are complex, multiphase systems
requiring a unified compositional approach for consistent
modeling of fluid behavior.

5
s

e Persistent Variables and Equations: Describe
system state across all phases

e Flexible EOS: Adaptable to simulate both high-and [
low-enthalpy geothermal conditions

Schema of conceptual EGS [1].

[1] Isaka, B.A. et al. (2019). Super-critical CO7 in geothermal systems. SETA, 36, 100547.
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Non-Isothermal Compositional Flow Model

Describes the non-isothermal flow and transport of multiple fluid components in a
continuum.

Components Phases
e N components e N, phases
e Indexed by € =1,2,..., N, e Indexed by v =1,2,..., N,

Other Assumptions

e Mass transfer between phases

e No chemical reactions between components

e Local thermal equilibrium: T, =T

o No capillary effects: p, = p

o Neglect hydrodynamic dispersion and diffusion
e Gravity neglected: g =0
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Primary Equations (PDEs)

Component Balance

B
a(qsng) —V - (£DVp) = q¢

~

Pressure (Total Mass) Balance

%(M—V(DW):q

Energy Balance

3 (0loh— )+ (1~ O)psh)

-V. (Z f,h,DVp + DhVT> =ge
Y

Parameters:

¢: porosity []

p: bulk density [kg/m?3]

z¢: component overall fraction [-]

fe: fractional flow [-]

D = \K: diffusive tensor [m?/Pa-s|

ge: component source/sink term
[kg/m?s]

p: pressure [Pa]

h: fluid specific enthalpy [J/kg]

ps: solid density [kg/md]

Dy thermal diffusivity tensor [W/m-K]
T: temperature [K]

ge: energy source/sink term [J/m3/s]
q : total mass source/ sink term [kg/m3s]
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Independent Variables

Assume that N, > 2 and N, > 2 and phase N, and component /. are references.

Primary Variables (N, + 1):

x=[p,hor T,z1,2,...,2N,1]

Reference component overall fraction (Closure relation 1):
Ne—1
ZN, = 1-— Z Ze
e=1
Secondary Variables (N,(N. + 1) — 1):

yx={Torh}U{s,:v=1,... N, —1}U{y,:v=1,...,N, — 1}
U{xey:€=1,...,Ne—1, v=1,...,N,}

Reference phase quantities (Closure relation 2):

N,—1 N,—1 No—1
svyi=1= ) s, yn =1 Y Yy X =1 ) Xery
y=1 ~y=1 £=1

Saturation Fraction N¢- component partial fraction
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Model Variables and Well-Posedness

+1)

Primary Variables (x):
(Ne

b

Secondary Variables (yx):
Np(Ne + 1) — 1

b

N, + 1

— PDEs

(Underdetermined System)

J—)[ Closure 1 ]
.
—)E Closure 2 ]
J
0 | . .
nfmltely' Many
Solutions

b

Constitutive Laws:
Elimination of Dangling Variables
Np(N. + 1) — 1

Well-Posed
System
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Secondary Equations (Non-PDEs)

Eliminate Secondary (Dangling) Variables



Secondary Equations (Non-PDEs) in PorePy

e Local Equilibrium Equations (Flash Calculations):
» Solve phase equilibrium problem to determine phase compositions and
transitions [2,3]
» Additional system of non-linear equations (computationally intensive)

e Correlation-Based Calculations:
» Use pre-computed flash results over a discretized space of primary

variables
» Rely on correlation formulas to approximate equilibrium properties,

e.g., using NaCl-H,0 phase diagram [1]

[1] Driesner, T., & Heinrich, C. A. (2007). The system H20-NaCl. Part I: Correlation formulae for phase relations in
temperature—pressure—composition space from 0 to 1000°C, 0 to 5000 bar, and 0 to 1 XNaCl. Geochimica et Cosmochimica
Acta, 71(20), 4880-4901.

[2] Gharbia, I. B., Haddou, M., Tran, Q. H., & Vu, D. T. S. (2021). An analysis of the unified formulation for the equilibrium
problem of compositional multiphase mixtures. ESAIM: Mathematical Modelling and Numerical Analysis, 55(6), 2981-3016.
[3] Lauser, A., Hager, C., Helmig, R., & Wohlmuth, B. (2011). A new approach for phase transitions in miscible multi-phase
flow in porous media. Advances in Water Resources, 34(8), 957-966.
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Correlation Formulation of NaCl-H,O System

Evaluation range

For each 7 € yy, the correlation [1,2] is given as -
TE Y fon [1.2] is giv %= (p, T, znac1)
X =

7D - R (P, h, znaci)

X— 7= T(X)

D = [0,5000] bar x [0,1000]°C x [0, 1] (Use Regula-Falsi BREVATY
method to transform X to x-space). PO

Offline
e Compute each 7 over the pre-discretized domain of
primary quantities with uniform or adaptive
resolution
e Derive Ox7 using finite difference method
e Save grid values and derivatives in VTK format

P [oar]

H,0 boiling curve

critical point
ofH,0

Saltwater phase diagram [2].

Online
e At any (p,h,znacl), use VTK data to interpolate the
values and derivatives as needed
[1] Guo, Z., et al. (2021). swEOS: Salt-water equation of state (1.7.0). Zenodo.

[2] Driesner, T., & Heinrich, C. A. (2007). Correlation formulae for HO-NaCl. Geochimica et NIVERSITY OF BERGEN
Cosmochimica Acta, 71(20), 4880-4901. Center for Modeling of Coupled Subsurface Dynamic




Physical Quantities in Correlation-Based Formulation

e To determine other phase-specific physical quantities, such as
density or viscosity, for each phase -y, we define the quantity 6, by
solving the equation:

g’Y(XvY7 9“/) =0

e Relationship is typically established using suitable equation of state
(EoS) combined with appropriate mixture rules
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Solution Strategy (Monolithic)

Overall Solution at Each Time Step:
Assume that full system of unknowns is:

<= ()

e Spatial Discretization: Multipoint Flux Approximation (MPFA) method
with an upwind scheme applied for advective terms
e Temporal Discretization: Implicit Euler method

Non-Linear System:
G(XH) =0
Newton Linearization:

J(Xt,n) (Xt,n+1 _ Xt,n) — _G(Xt,n)

p N
UNIVERSITY OF BERGEN [ {&




Numerical Experiments

e 1D Advection-Dominated (Constant Temperature):

» Pure water, single-phase and supercritical fluid flow
» Pure water, two-phase flow

Impermeable top

P Pinitial = Pin + (8xP)x
in —|
Tin Tinitial = Tout

s Pout
out

Impermeable bottom

e 2D Convection-Dominated (Constant Heat Flux) without gravity:

Permeable: Patm, Tiop = 10°C

&
2
2
E] Pinitial = Patm
o
£ Tinitial = Ttop
@
a
E
—@0—

Impermeable right

Heat Source

X i Impermeable bottom
Implementation in PorePy [1]:

Benchmark with CSMP++ (developed by Stephan Matthai and colleagues at ETH Zurich) [2].

[1] Keilegavlen, E., Berge, R., Fumagalli, A., Starnoni, M., Stefansson, I., Varela, J., & Berre, I. (2021). Porepy: An open-source software for simulation of multiphysics processes in

fractured porous media. Computational Geosciences, 25, 243-265.

[2] Weis, P., Driesner, T., Coumou, D., & Geiger, S. (2014). Hydrothermal, multiphase convection of H20-NaCl fluids from ambient to magmatic temperatures: A new numerical

scheme and benchmarks for code comparison. Geofluids, 14(3), 347-371.
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1D Advection-Dominated

Impermeable top

Common model parameters:

e Domain: 2000 x 10m Pl Pinial = Pin + (3,P)x s Pout

Tin Tinitial = Tout Tout

e Abs perm: 107°m? (isotropic)
e Component: H,0 Impermeable bottom

e Relperm: linear

e Pressure and energy equations are active
o x=(p,h) e At BCs and ICs: h:= h(p, T)
e Grid cell size: 10m e ot € [100, 365] days

e Convergence tol: 1073
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1D Advection Dominated (Single-Phase)

Three Cases: Single-Phase/Fluid Flow

Case 1: Liquid Phase

® pPin = 50 MPa,

Pout = 25 MPa

— o
e T;, = 350°C,
B o
Tout = 150°C
.
[E———
~ L T
G — Pressure Gorepy) |45
O T e o
g 250 “
*{G o years
g 2
g
E o
5 “
-

i
Distance (km)

Pressure (

MPa)

e pi, = 40 MPa,
Pout = 20 MPa

Case 2: Supercritical Fluid

® Din = 15.0 |\/||:>Ei7
Pout = 1.0 MPa

Case 3: Vapor Phase

. — ° . — ]
e T, =450°C, e Ti, =500°C,
— o _ o
Tout = 300°C Tout = 300°C
40

450| —— Temperature (Porepy) 500 —— Temperature (Porepy)
_ — = Temperature (CSMP++) = - Temperature (CSMP+-+)
9 I, sE e
< ure 4 K < — - Pressure (CSMP++)
@ 400 = ]
5 120 years — 5 1500 years
2 0@ 2 a00
e 5 o
@ @
Q350 4 g
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1D Advection Dominated (Two-Phase)

Case 1: Pure Water Two-Phase (High Pressure Gradient)

e BCs:

» pin = 20.0MPa, pou = 1.0MPa
> T, =400°C, Tou = 150°C

Residual liquid saturation (Ry): 0.3

Residual vapour saturation (R, ): 0.0

Relperm of liquid:

kn(s1) = si—R if s > R

{0 if s <R
1_(RI+RV)

Relperm of vapor:

o Sv_Rv
1-(R+R)

UNIVERSITY OF BERGEN (5
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1D Advection Dominated (Two-Phase)

Case 1: Pressure -Temperature and Saturation Progressions
(High Pressure Gradient)
400 120 1.00
= Temperature (Porepy)
— = Pressure (Porepy) —— Liquid saturation (Porepy)
O 350 5% S o7s °
L 200 years o % 0.75) g
3 . .
axj-J 300 3 5 Vapor + Liquid
= 10Q oso 2
i\ =" 2
250 % -
Qo =
£ I CI= T Beglfualiu.
@ 200 a5
150 0.
1 1
Porepy Distance (km) Distance (km)
400 120 1.00
‘\*\\\ = = Temperature (CSMP++) :
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g -
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3 g PYE= . g 1
© N 100 T oso g |
o (N S w 2
@ 250 1S n o 1
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1D Advection Dominated (Two-Phase)

Case 2: Pure Water Two-phase Flow (Low Pressure Gradient)

e BCs:

» pi, = 4.0MPa, po,t = 1.0 MPa
» T, =300°C, T, = 150°C

e Residual liquid saturation (R)): 0.3
e Residual vapour saturation (R,): 0.0

e Relperm of liquid and vapour: same with high pressure gradient case
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1D Advection Dominated (Two-Phase)

Case 1: Pressure-Temperature and Saturation Progressions

(Low Pressure Gradient)
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2D Convection-Dominated with Constant Heat Flux
Pure Water Liquid Phase

e Domain: 9 x 3 km
e BCs:
> Prop = 0.IMPa, Ty = 10°C
» Imperbeable sides and bottom
e ICs: pinitial = hydrostatic pressure, Tinitial = 10°C
e Constant heat flux (ge) over lkm at bottom center: 5W/m?3
e No gravity

O jooioieinieeine o ininis e s e e e e e e e e ee e

B
<
<
B
o5
a

2

3 RN eessd R

4 2 0 2 4
™~ Heat Flux
Distance (km)

[1] Weis, P., Driesner, T., Coumou, D., & Geiger, S. (2014). Hydrothermal, multiphase convection of H20-NaCl fluids from ambient to magmati
temperatures: A new numerical scheme and benchmarks for code comparison. Geofluids, 14(3), 347-371. U \ v F P\WT\ (7 F H F RL. F \

Center for Mod

up



2D Convection-Dominated with Constant Heat Flux

Temperature-Pressure Evolution after 5 kyrs

5 kyrs
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Conclusion

e Developed a unified compositional model combined with
pre-computed flash calculation for multiphase geothermal reservoir
simulation

e Implemented in PorePy for high-enthalpy and single component
two-phase flow

e Achieved good agreement with existing benchmark models

e Applications in geothermal energy extraction, predicting
temperature-pressure dynamics and phase transitions

UNIVERSITY OF BERGEN




Local Equilibrium Model

Motivation:

e Avoid interpolation and additional error.

o Advanced strategies for equilibrium calculations without relying on an a-priori
discretized thermodynamic space.

e Step towards generality in terms of thermodynamic modeling (EoS) and parameter
space (p, T, h, u, v).

Outline of unified flash
The persistent variable approach requires a uniform formulation of the phase equilibrium
conditions [1].
e Static phase context v =1,2,..., N,.
o Phase appearance & disappearance is handled with inequality constraints 0 <y, < 1.
e Introduction of extended partial fractions X¢, for each phase

Xevy yy >0 No .
Xey = Rev -0 70S172X477
Yoxer N T ¢=1

as mathematical extensions for the case y, = 0.

[1] Ben Gharbia et al. An analysis of the unified formulation for the
equilibrium problem of compositional multiphase mixtures. ESAIM (55) 6, 2981-3016 (2021) UNIVERSITY OF BERGEN [




Unified equilibrium conditions: Optimization approach

Locally, we consider the thermodynamic state of the fluid defined in terms of z¢ and two
additional state functions o

o€ {{p, T} Ap, h}, {v, T} {v, u}, {v, h}}.

Secondary Variables (N, N, 4+ 2(N, — 1) fractions):

Yo ={pand/or TYU{s, iy =1,...,Np—1}U{y, :v=1,...,N, — 1}
UfRey 1 €=1,..., N, y=1,..., Np}.

Reference phase parameters (Closure relation 3):
Np—1 Np—1
sy, ==1— Zs% N, =1-— ZM
7=1 =1

— primary variables can be seen as transport of thermodynamic target state,
— secondary variables as local, non-linear alteration of transport.

UNIVERSITY OF BERGEN
for Modeling of Coupled Subsurface Dynamic




Find y} such that
Yo = argmin f(y)
y

Np

with:  ze — Ziévyv =0, V¢,
y=1

yy >0, V.
f»(y) is a function to be minimized depending target state o . In fact, we again obtain a map

Tyl X To(X) =y

o

*

with 7 not being an interpolation, but the solution to the o-flash problem.
Exemplarily,

fo,7 = g (Gibbs energy minimization),
1
foh=—S= ?(g — h) (entropy maximization).
By virtue of thermodynamic relations, the target function can always be chosen to be of the
following form [1]:
fo(y) = fo(y, &(y))

UNIVERSITY OF BERGEN (5
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With f,(y) = f>(y, g(y)) and standard optimization techniques, the semi-smooth first-order
conditions are of form

Fa(X7Y) = vy’ro' = Ta(y

with

Koy — Remp o) ecrn
Ny — (fe ) e, 1) = [0)enm ] A = (- T en) -

Ny o
<z§ 254 Xf"*y”)g:l‘../v

Using the unified formulation and an optimization approach, we arrived at a general mathematical
structure of the flash problem, where only T, varies:

Np
TpT = [7] s Tph = |h— ZYW'hv(Y)
y=1

UNIVERSITY OF BERGEN (5




Coupling with flow & transport

With G(x*,y") denoting the discretized balance equations and
x=[p, h,z1,...,2zn.—1], the unified compositional formulation using the
isenthalpic flash can be written as

[Ff,f(xxtiy ;2>] =0

Numerical Solution strategies

While flow & transport progress in some non-zero characteristic time, the
local phase equilibrium is instantaneous.

The stiffness of the system in the general case (EoS) makes it difficult to
solve above system without a splitting-type approach.

UNIVERSITY OF BERGEN




2D Flash calculations as resolutions of instant-time scale
for multiple flow regimes

e A Semi-smooth Newton solver with a
Schur complement technique is applied on
the global system.

e In between iterations, the flash problem is
solved in every cell in parallel.

e The numerical method to obtain 7*(x})
can be any suitable optimization algorithm
[1].

e The pT-flash as a subset of the ph-flash
can be used in areas with a less volatile
flow regime.

e Ongoing work explores above mentioned
options.

[1] Vu et al.A new approach for solving nonlinear algebraic systems with
complementarity conditions. Application to compositional multiphase equilibrium UNIVERSITY OF BERGEN (5
problems, IMACS (190), 1243-1274 (2021) Center for Modeling of Coupled Subsurface Dynamic



Conclusion

e A persistent variable formulation for both flow & transport problem,
and thermodynamic equilibrium problem leads to a global and closed
mathematical model.

e Flash calculations can be used to resolve the instantaneous
timescale.

e Computational cost, as a price for flexibility, can be significantly
compensated for using the unified formulation and an efficient
parallelization.
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