A Unified Multiphase Compositional Flow Simulation Model in PorePy

M. Oguntola¹, V. Lipovac¹, O. Duran ¹, E. Keilegavlen¹, I. Berre¹

1: Centre for Modeling of Coupled Subsurface Dynamics, Department of Mathematics, University of Bergen, Norway

Center for Modeling of Coupled Subsurface Dynamics University of Bergen

MaPSI project (2021-2026). This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No 101002507).

The Porous Media Group (PMG)

Key Information

- Dates back to 1985
- Leading international research group in applied and computational mathematics of porous media
- Strong interdisciplinary nature
- Applications: CO₂ storage, geothermal energy, and biomedicine
- Majority of publications within mathematics and geoscience
- Strong interdisciplinary and intersectoral collaboration within CO₂ storage and geothermal energy

Team

- 5 professors (Berre, Dahle, Kumar, Nordbotten, Radu)
- 1 senior researcher 1183 (Keilegavlen)
- 2 researchers (Both, Stefansson)
- 14 PhD students (Jan 2025), 2 postdocs

PorePy

- Open-source code developed at UiB github.com/pmgbergen/porepy
- Mixed-dimensional simulations using domain decomposition of rock, fractures and intersections
- Modeling physical processes using governing equations within subdomains
- Coupling across interfaces between subdomains with dimension gap 1
- Mixed-dimensional domain is a graph, with subdomains as nodes and interfaces as edges
- Meshing on individual subdomains and interfaces resembles that of a standard problem.
- Subdomain models resemble fixed-dimensional problems.
- Coupling manifests as BC or source terms

Schematic representation of rock (dim D), fractures (dim D-1) and intersections (dim D-2).

Higher-dimensional subdomain Ω_h coupled via interface Γ_j to lower-dimensional subdomain Ω_l .

PorePy

- Interface equations and discretizations make the difference from fixed-dimensional problems
- Finite-volume based modeling (MPFA, MPSA, Upwinding)
- Translation of general multiphysics model to numerical format using automatic differentiation adapted to mixed-dimensional setting

Dang et al. Two-level simulation of injection-induced fracture slip and wing-crack propagation in poroelastic media. IJRMMS 160, 105248 (2022).

Stefansson et al. Numerical Modelling of Convection-Driven Cooling, Deformation and Fracturing of Thermo-Poroelastic Media. TiPM 140, 371–394 (2021).

Varela et al. A posteriori error estimates for hierarchical mixed-dimensional elliptic equations. JNM 31 (4), 247-280 (2023).

Motivation

Geothermal System as a Compositional System

Geothermal reservoirs are complex, multiphase systems requiring a unified compositional approach for consistent modeling of fluid behavior.

- Persistent Variables and Equations: Describe system state across all phases
- Flexible EOS: Adaptable to simulate both high-and low-enthalpy geothermal conditions

Schema of conceptual EGS [1].

UNIVERSITY OF BERGEN Center for Modeling of Coupled Subsurface Dynamics

[1] Isaka, B.A. et al. (2019). Super-critical CO2 in geothermal systems. SETA, 36, 100547.

Non-Isothermal Compositional Flow Model

Describes the non-isothermal flow and transport of multiple fluid components in a continuum.

Primary Equations (PDEs)

$$\frac{\partial}{\partial t} \left(\phi[\rho h - \rho] + (1 - \phi)\rho_s h_s \right) - \nabla \cdot \left(\sum_{\gamma} f_{\gamma} h_{\gamma} \mathbf{D} \nabla \rho + \mathbf{D}_h \nabla T \right) = q_e$$

Parameters: ϕ : porosity [-] ρ : bulk density [kg/m³] z_{ε} : component overall fraction [-] f_{ε} : fractional flow [-] $\mathbf{D} = \lambda \mathbf{K}$: diffusive tensor $[\mathbf{m}^2/P_{\mathbf{a}\cdot\mathbf{s}}]$ $q_{\mathcal{E}}$: component source/sink term $[kg/m^3s]$ p: pressure [Pa] h: fluid specific enthalpy [J/kg] ρ_s : solid density [kg/m³] \mathbf{D}_h : thermal diffusivity tensor [W/m·K] T: temperature [K] q_e : energy source/sink term [J/m³/s] q : total mass source/ sink term $[kg/m^3s]$

Independent Variables

Assume that $N_p \ge 2$ and $N_c \ge 2$ and phase N_p and component N_c are references. Primary Variables $(N_c + 1)$:

$$\mathbf{x} = [p, h \text{ or } T, z_1, z_2, \dots, z_{N_c-1}].$$

Reference component overall fraction (Closure relation 1):

$$z_{N_c} = 1 - \sum_{\xi=1}^{N_c-1} z_{\xi}$$

Secondary Variables $(N_p(N_c + 1) - 1)$:

$$\begin{aligned} \mathbf{y}_{\mathbf{x}} &= \{ T \text{ or } h \} \cup \{ \mathbf{s}_{\gamma} : \gamma = 1, \dots, N_{p} - 1 \} \cup \{ y_{\gamma} : \gamma = 1, \dots, N_{p} - 1 \} \\ & \cup \{ \chi_{\xi\gamma} : \xi = 1, \dots, N_{c} - 1, \ \gamma = 1, \dots, N_{p} \} \end{aligned}$$

Reference phase quantities (Closure relation 2):

UNIVERSITY OF BERGEN Center for Modeling of Coupled Subsurface Dynamics

Model Variables and Well-Posedness

Secondary Equations (Non-PDEs)

Eliminate Secondary (Dangling) Variables

Secondary Equations (Non-PDEs) in PorePy

- Local Equilibrium Equations (Flash Calculations):
 - Solve phase equilibrium problem to determine phase compositions and transitions [2,3]
 - Additional system of non-linear equations (computationally intensive)

• Correlation-Based Calculations:

- Use pre-computed flash results over a discretized space of primary variables
- Rely on correlation formulas to approximate equilibrium properties, e.g., using NaCl-H₂O phase diagram [1]

[1] Driesner, T., & Heinrich, C. A. (2007). The system H2O–NaCl. Part I: Correlation formulae for phase relations in temperature–pressure–composition space from 0 to 1000°C, 0 to 5000 bar, and 0 to 1 XNaCl. Geochimica et Cosmochimica Acta, 71(20), 4880-4901.

[2] Gharbia, I. B., Haddou, M., Tran, Q. H., & Vu, D. T. S. (2021). An analysis of the unified formulation for the equilibrium problem of compositional multiphase mixtures. ESAIM: Mathematical Modelling and Numerical Analysis, 55(6), 2981-3016.
 [3] Lauser, A., Hager, C., Helmig, R., & Wohlmuth, B. (2011). A new approach for phase transitions in miscible multi-phase flow in porous media. Advances in Water Resources, 34(8), 957-966.

Correlation Formulation of NaCl-H₂O System

Evaluation range

For each $\tau \in \mathbf{y}_{\mathbf{x}}$, the correlation [1,2] is given as

$$\begin{split} & ilde{ au} : \mathcal{D} \longrightarrow \mathbb{R} \ & ilde{ extbf{x}} \longmapsto au := ilde{ au}(ilde{ extbf{x}}) \end{split}$$

$$\label{eq:constraint} \begin{split} \mathcal{D} = [0, 5000] \, \text{bar} \times [0, 1000]^\circ \text{C} \times [0, 1] \mbox{ (Use Regula-Falsi} \\ method to transform ~\tilde{\textbf{x}} to \textbf{x}-space). \end{split}$$

Offline

- Compute each τ over the pre-discretized domain of primary quantities with uniform or adaptive resolution
- Derive $\partial_{\mathbf{x}} \tau$ using finite difference method
- Save grid values and derivatives in VTK format

$$\label{eq:x_act} \begin{split} \tilde{\textbf{x}} &= (\textbf{p},\,\textbf{T},\,\textbf{z}_{NaCl}) \\ \textbf{x} &= (\textbf{p},\,\textbf{h},\,\textbf{z}_{NaCl}) \end{split}$$

Saltwater phase diagram [2].

Online

• At any (p,h,z_{NaCl}), use VTK data to interpolate the values and derivatives as needed

 Guo, Z., et al. (2021). swEOS: Salt-water equation of state (1.7.0). Zenodo.
 Driesner, T., & Deinrich, C. A. (2007). Correlation formulae for H₂O-NaCl. Geochimica et Cosmochimica Acta, 71(20), 4880-4901.

UNIVERSITY OF BERGEN Center for Modeling of Coupled Subsurface Dynamics

Physical Quantities in Correlation-Based Formulation

• To determine other phase-specific physical quantities, such as density or viscosity, for each phase γ , we define the quantity θ_{γ} by solving the equation:

$$g_{\gamma}(\mathbf{x},\mathbf{y}, heta_{\gamma})=0$$

• Relationship is typically established using suitable equation of state (EoS) combined with appropriate mixture rules

Solution Strategy (Monolithic)

Overall Solution at Each Time Step:

Assume that full system of unknowns is:

$$\mathbf{X}^t = \begin{pmatrix} \mathbf{x}^t \\ \mathbf{y}^t \end{pmatrix}$$

- **Spatial Discretization**: Multipoint Flux Approximation (MPFA) method with an upwind scheme applied for advective terms
- Temporal Discretization: Implicit Euler method

Non-Linear System:

$$\mathbf{G}(\mathbf{X}^t) = \mathbf{0}$$

Newton Linearization:

$$J(\mathbf{X}^{t,n})(\mathbf{X}^{t,n+1}-\mathbf{X}^{t,n})=-G(\mathbf{X}^{t,n})$$

Numerical Experiments

- 1D Advection-Dominated (Constant Temperature):
 - Pure water, single-phase and supercritical fluid flow
 - Pure water, two-phase flow

• 2D Convection-Dominated (Constant Heat Flux) without gravity:

Implementation in PorePy [1]:

Benchmark with CSMP++ (developed by Stephan Matthai and colleagues at ETH Zurich) [2].

[2] Weis, P., Driesner, T., Coumou, D., & Geiger, S. (2014). Hydrothermal, multiphase convection of H2O-NaCl fluids from ambient to magmatic temperatures: A new numerical scheme and benchmarks for code comparison. Geofluids, 14(3), 347-371.

UNIVERSITY OF BERGEN Center for Modeling of Coupled Subsurface Dynamics

^[1] Keilegavlen, E., Berge, R., Fumagalli, A., Starnoni, M., Stefansson, I., Varela, J., & Berre, I. (2021). Porepy: An open-source software for simulation of multiphysics processes in fractured porous media. Computational Geosciences, 25, 243-265.

1D Advection-Dominated

Common model parameters:

- Domain: $2000 \times 10m$
- Abs perm: 10^{-15} m² (isotropic)
- Component: H_20
- Relperm: linear
- Pressure and energy equations are active

•
$$\mathbf{x} = (p, h)$$

• Grid cell size: 10m

- At BCs and ICs: $h := \tilde{h}(p, T)$
- $\delta t \in [100, 365]$ days
- Convergence tol: 10^{-3}

1D Advection Dominated (Single-Phase)

Three Cases: Single-Phase/Fluid Flow

Case 1: Liquid Phase

Case 2: Supercritical Fluid

*p*_{in} = 50 MPa,
 *p*_{out} = 25 MPa

• $T_{in} = 350^{\circ}C,$ $T_{out} = 150^{\circ}C$ • $p_{in} = 40 \text{ MPa}$, $p_{out} = 20 \text{ MPa}$

• $T_{in} = 450^{\circ}C$, $T_{out} = 300^{\circ}C$

Case 3: Vapor Phase

- $p_{in} = 15.0 \text{ MPa},$ $p_{out} = 1.0 \text{ MPa}$
- $T_{in} = 500^{\circ}C,$ $T_{out} = 300^{\circ}C$

Case 1: Pure Water Two-Phase (High Pressure Gradient)

- BCs:
 - ▶ $p_{in} = 20.0 \text{MPa}, p_{out} = 1.0 \text{MPa}$
 - ► $T_{in} = 400^{\circ}C, T_{out} = 150^{\circ}C$
- Residual liquid saturation (R_l) : 0.3
- Residual vapour saturation (R_v) : 0.0
- Relperm of liquid:

$$k_{rl}(s_l) = \begin{cases} 0 & \text{if } s_l \leq R_l \\ \frac{s_l - R_l}{1 - (R_l + R_v)} & \text{if } s_l > R_l \end{cases}$$

• Relperm of vapor:

$$k_{rv}(s_v) = \frac{s_v - R_v}{1 - (R_l + R_v)}$$

UNIVERSITY OF BERGEN Center for Modeling of Coupled Subsurface Dynamics

Case 1: Pressure -Temperature and Saturation Progressions (High Pressure Gradient)

Case 2: Pure Water Two-phase Flow (Low Pressure Gradient)

- BCs:
 - ▶ $p_{in} = 4.0 \text{MPa}, \ p_{out} = 1.0 \text{MPa}$
 - $\blacktriangleright T_{in} = 300^{\circ}C, \ T_{out} = 150^{\circ}C$
- Residual liquid saturation (R_l) : 0.3
- Residual vapour saturation (R_v) : 0.0
- Relperm of liquid and vapour: same with high pressure gradient case

Case 1: Pressure-Temperature and Saturation Progressions (Low Pressure Gradient)

2D Convection-Dominated with Constant Heat Flux

Pure Water Liquid Phase

- Domain: $9 \times 3 \text{ km}$
- BCs:
 - $p_{top} = 0.1 \text{MPa}, T_{top} = 10^{\circ} \text{C}$
 - Imperbeable sides and bottom
- ICs: $p_{\text{initial}} = \text{hydrostatic pressure}, \ T_{\text{initial}} = 10^{\circ}\text{C}$
- Constant heat flux (q_e) over 1km at bottom center: 5W/m³
- No gravity

[1] Weis, P., Driesner, T., Coumou, D., & Geiger, S. (2014). Hydrothermal, multiphase convection of H2O-NaCl fluids from ambient to magmatic temperatures: A new numerical scheme and benchmarks for code comparison. Geofluids, 14(3), 347-371. UNIVERSITY OF BERGEN

Center for Modeling of Coupled Subsurface Dynamics

2D Convection-Dominated with Constant Heat Flux

Temperature-Pressure Evolution after 5 kyrs

Conclusion

- Developed a unified compositional model combined with pre-computed flash calculation for multiphase geothermal reservoir simulation
- Implemented in PorePy for high-enthalpy and single component two-phase flow
- Achieved good agreement with existing benchmark models
- Applications in geothermal energy extraction, predicting temperature-pressure dynamics and phase transitions

Local Equilibrium Model

Motivation:

- Avoid interpolation and additional error.
- Advanced strategies for equilibrium calculations without relying on an a-priori discretized thermodynamic space.
- Step towards generality in terms of thermodynamic modeling (EoS) and parameter space (p, T, h, u, v).

Outline of unified flash

The persistent variable approach requires a *uniform formulation* of the phase equilibrium conditions [1].

- Static phase context γ = 1, 2, ..., N_p.
- Phase appearance & disappearance is handled with inequality constraints $0 \le y_{\gamma} \le 1$.
- Introduction of extended partial fractions $\tilde{\chi}_{\xi\gamma}$ for each phase γ

$$\chi_{\xi\gamma} = \begin{cases} \tilde{\chi}_{\xi\gamma} & y_{\gamma} > 0\\ \frac{\tilde{\chi}_{\xi\gamma}}{\sum_{\zeta} \tilde{\chi}_{\zeta\gamma}} & y_{\gamma} = 0 \end{cases}, \ 0 \le 1 - \sum_{\zeta=1}^{N_{p}} \tilde{\chi}_{\zeta\gamma} ,$$

as mathematical extensions for the case $y_{\gamma} = 0$.

 Ben Gharbia et al. An analysis of the unified formulation for the equilibrium problem of compositional multiphase mixtures. ESAIM (55) 6, 2981-3016 (2021)

UNIVERSITY OF BERGEN Center for Modeling of Coupled Subsurface Dynamics

Unified equilibrium conditions: Optimization approach

Locally, we consider the thermodynamic state of the fluid defined in terms of z_ξ and two additional state functions σ

$$\sigma \in \{\{p, T\}, \{p, h\}, \{v, T\}, \{v, u\}, \{v, h\}\}.$$

Secondary Variables $(N_p N_c + 2(N_p - 1) \text{ fractions})$:

$$\begin{split} \tilde{\mathbf{y}}_{\sigma} &= \{ p \text{ and/or } T \} \cup \{ s_{\gamma} : \gamma = 1, \dots, N_p - 1 \} \cup \{ y_{\gamma} : \gamma = 1, \dots, N_p - 1 \} \\ & \cup \{ \tilde{\chi}_{\xi\gamma} : \xi = 1, \dots, N_c, \ \gamma = 1, \dots, N_p \}. \end{split}$$

Reference phase parameters (Closure relation 3):

$$s_{N_p} := 1 - \sum_{\gamma=1}^{N_p-1} s_\gamma, \;\; y_{N_p} := 1 - \sum_{\gamma=1}^{N_p-1} y_\gamma$$

 \rightarrow primary variables can be seen as *transport of thermodynamic target state*, \rightarrow secondary variables as local, non-linear alteration of transport.

Find $\mathbf{y}_{\sigma}^{\star}$ such that

$$\begin{split} \mathbf{y}_{\sigma}^{\star} &= \operatorname*{arg\,min}_{\mathbf{y}} \ f_{\sigma}(\mathbf{y}) \\ \text{with:} \quad z_{\xi} - \sum_{\gamma=1}^{N_{p}} \tilde{\chi}_{\xi\gamma} y_{\gamma} = 0, \ \forall \xi, \\ \quad y_{\gamma} \geq 0, \ \forall \gamma. \end{split}$$

 $f_{\sigma}(\mathbf{y})$ is a function to be minimized depending target state σ . In fact, we again obtain a map

$$\tau_{\sigma}^{\star}: \mathbf{x} \longmapsto \tau_{\sigma}^{\star}(\mathbf{x}) = \mathbf{y}^{\star}$$
,

with τ_{σ}^{*} not being an interpolation, but the solution to the σ -flash problem. Exemplarily,

$$\begin{split} f_{p,T} &= g \quad \text{(Gibbs energy minimization),} \\ f_{p,h} &= -S = \frac{1}{T}(g-h) \quad \text{(entropy maximization).} \end{split}$$

By virtue of thermodynamic relations, the target function can always be chosen to be of the following form [1]:

$$f_{\sigma}(\mathbf{y}) = f_{\sigma}(\mathbf{y}, g(\mathbf{y}))$$

With $f_{\sigma}(\mathbf{y}) = f_{\sigma}(\mathbf{y}, g(\mathbf{y}))$ and standard optimization techniques, the semi-smooth first-order conditions are of form

$$F_{\sigma}(\mathbf{x}, \mathbf{y}) =
abla_{\mathbf{y}} f_{\sigma} = egin{bmatrix} \Lambda(\mathbf{y}) \ \Upsilon_{\sigma}(\mathbf{y}) \ \min\{\Gamma(\mathbf{y}), \lambda(\mathbf{y})\} \end{bmatrix} = 0 \; ,$$

with

$$\Lambda(\mathbf{y}) = \begin{bmatrix} \left(\tilde{\chi}_{\xi\gamma} - \tilde{\chi}_{\xi N_{p}} \frac{\varphi_{\xi N_{p}}}{\varphi_{\xi\gamma}}\right)_{\gamma=1...N_{p}-1} \\ \left(z_{\xi} - \sum_{\gamma=1}^{N_{p}} \tilde{\chi}_{\xi\gamma} y_{\gamma}\right)_{\xi=1...N_{p}} \end{bmatrix}, \ \Gamma(\mathbf{y}) = \begin{bmatrix} (y_{\gamma})_{\gamma=1...N_{p}} \end{bmatrix}, \ \lambda(\mathbf{y}) = \begin{bmatrix} \left(1 - \sum_{\xi=1}^{N_{c}} \tilde{\chi}_{\xi,\gamma}\right)_{\gamma=1...N_{p}} \end{bmatrix}$$

Using the unified formulation and an optimization approach, we arrived at a general mathematical structure of the flash problem, where only Υ_{σ} varies:

$$\Upsilon_{pT} = [-], \quad \Upsilon_{ph} = \left[h - \sum_{\gamma=1}^{N_p} y_{\gamma} h_{\gamma}(\mathbf{y})\right].$$

Coupling with flow & transport

With $G(\mathbf{x}^t, \mathbf{y}^t)$ denoting the discretized balance equations and $\mathbf{x} = [p, h, z_1, \dots, z_{N_c-1}]$, the unified compositional formulation using the isenthalpic flash can be written as

$$egin{bmatrix} G(\mathbf{x}^t,\mathbf{y}^t)\ F_{ph}(\mathbf{x}^t,\mathbf{y}^t) \end{bmatrix} = 0. \end{split}$$

Numerical Solution strategies

While flow & transport progress in some non-zero characteristic time, the local phase equilibrium is instantaneous.

The stiffness of the system in the general case (EoS) makes it difficult to solve above system without a splitting-type approach.

NIVERSITY OF BERGEN leling of Coupled Subsurface Dynamics

2D Flash calculations as resolutions of instant-time scale for multiple flow regimes

- A Semi-smooth Newton solver with a Schur complement technique is applied on the global system.
- In between iterations, the flash problem is solved in every cell in parallel.
- The numerical method to obtain τ*(x^t_i) can be any suitable optimization algorithm [1].
- The pT-flash as a subset of the ph-flash can be used in areas with a less volatile flow regime.
- Ongoing work explores above mentioned options.

[1] Vu et al.A new approach for solving nonlinear algebraic systems with complementarity conditions. Application to compositional multiphase equilibrium problems, IMACS (190), 1243-1274 (2021)

UNIVERSITY OF BERGEN Center for Modeling of Coupled Subsurface Dynamics

Conclusion

- A persistent variable formulation for both flow & transport problem, and thermodynamic equilibrium problem leads to a global and closed mathematical model.
- Flash calculations can be used to resolve the instantaneous timescale.
- Computational cost, as a price for flexibility, can be significantly compensated for using the unified formulation and an efficient parallelization.

