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The Porous Media Group (PMG)

Key Information
• Dates back to 1985
• Leading international research group in applied
and computational mathematics of porous
media

• Strong interdisciplinary nature
• Applications: CO2 storage, geothermal energy,
and biomedicine

• Majority of publications within mathematics
and geoscience

• Strong interdisciplinary and intersectoral
collaboration within CO2 storage and
geothermal energy

Team
• 5 professors (Berre, Dahle, Kumar, Nordbotten,
Radu)

• 1 senior researcher 1183 (Keilegavlen)
• 2 researchers (Both, Stefansson)
• 14 PhD students (Jan 2025), 2 postdocs



PorePy

• Open-source code developed at UiB
github.com/pmgbergen/porepy

• Mixed-dimensional simulations using domain
decomposition of rock, fractures and intersections

• Modeling physical processes using governing
equations within subdomains

• Coupling across interfaces between subdomains
with dimension gap 1

• Mixed-dimensional domain is a graph, with
subdomains as nodes and interfaces as edges

• Meshing on individual subdomains and interfaces
resembles that of a standard problem.

• Subdomain models resemble fixed-dimensional
problems.

• Coupling manifests as BC or source terms

Schematic representation of rock (dim D), fractures (dim D-1)
and intersections (dim D-2).

Higher-dimensional subdomain Ωh coupled via interface Γj to
lower-dimensional subdomain Ωl .

https://github.com/pmgbergen/porepy


PorePy

• Interface equations and discretizations
make the difference from
fixed-dimensional problems

• Finite-volume based modeling (MPFA,
MPSA, Upwinding)

• Translation of general multiphysics
model to numerical format using
automatic differentiation adapted to
mixed-dimensional setting

Dang et al. Two-level simulation of injection-induced fracture slip and
wing-crack propagation in poroelastic media. IJRMMS 160, 105248 (2022).

Stefansson et al. Numerical Modelling of Convection-Driven
Cooling, Deformation and Fracturing of Thermo-Poroelastic
Media. TiPM 140, 371–394 (2021).

Varela et al. A posteriori error estimates for hierarchical
mixed-dimensional elliptic equations. JNM 31 (4), 247-280
(2023).



Motivation

Geothermal System as a Compositional System

Geothermal reservoirs are complex, multiphase systems
requiring a unified compositional approach for consistent
modeling of fluid behavior.

• Persistent Variables and Equations: Describe
system state across all phases

• Flexible EOS: Adaptable to simulate both high-and
low-enthalpy geothermal conditions

Schema of conceptual EGS [1].

[1] Isaka, B.A. et al. (2019). Super-critical CO2 in geothermal systems. SETA, 36, 100547.



Non-Isothermal Compositional Flow Model

Describes the non-isothermal flow and transport of multiple fluid components in a
continuum.

Components

• Nc components
• Indexed by ξ = 1, 2, . . . ,Nc

Phases

• Np phases
• Indexed by γ = 1, 2, . . . ,Np

Other Assumptions

• Mass transfer between phases
• No chemical reactions between components
• Local thermal equilibrium: Tγ = T
• No capillary effects: pγ = p
• Neglect hydrodynamic dispersion and diffusion
• Gravity neglected: g⃗ = 0



Primary Equations (PDEs)

Component Balance

∂

∂t
(ϕρzξ)−∇ · (fξD∇p) = qξ

Pressure (Total Mass) Balance

∂

∂t
(ϕρ)−∇ · (D∇p) = q

Energy Balance
∂

∂t
(ϕ[ρh − p] + (1− ϕ)ρshs)

−∇ ·

(∑
γ

fγhγD∇p +Dh∇T

)
= qe

Parameters:
ϕ: porosity [–]
ρ: bulk density [kg/m3]
zξ: component overall fraction [–]
fξ: fractional flow [–]
D = λK: diffusive tensor [m2/Pa·s]
qξ: component source/sink term
[kg/m3s]
p: pressure [Pa]
h: fluid specific enthalpy [J/kg]
ρs : solid density [kg/m3]
Dh: thermal diffusivity tensor [W/m·K]
T : temperature [K]
qe : energy source/sink term [J/m3/s]
q : total mass source/ sink term [kg/m3s]



Independent Variables
Assume that Np ≥ 2 and Nc ≥ 2 and phase Np and component Nc are references.

Primary Variables (Nc + 1):

x = [p, h or T , z1, z2, . . . , zNc−1].

Reference component overall fraction (Closure relation 1):

zNc = 1−
Nc−1∑
ξ=1

zξ

Secondary Variables (Np(Nc + 1)− 1):

yx = {T or h} ∪ {sγ : γ = 1, . . . ,Np − 1} ∪ {yγ : γ = 1, . . . ,Np − 1}
∪ {χξγ : ξ = 1, . . . ,Nc − 1, γ = 1, . . . ,Np}

Reference phase quantities (Closure relation 2):

sNp := 1−
Np−1∑
γ=1

sγ︸ ︷︷ ︸
Saturation

, yNp := 1−
Np−1∑
γ=1

yγ︸ ︷︷ ︸
Fraction

, χNcγ = 1−
Nc−1∑
ξ=1

χξγ︸ ︷︷ ︸
Nc - component partial fraction



Model Variables and Well-Posedness

Primary Variables (x):
(Nc + 1) Closure 1

Secondary Variables (yx):
Np(Nc + 1) − 1 Closure 2

Nc + 1− PDEs
(Underdetermined System)

Constitutive Laws:
Elimination of Dangling Variables

Np(Nc + 1) − 1

Infinitely Many
Solutions

Well-Posed
System



Secondary Equations (Non-PDEs)
Eliminate Secondary (Dangling) Variables



Secondary Equations (Non-PDEs) in PorePy

• Local Equilibrium Equations (Flash Calculations):
▶ Solve phase equilibrium problem to determine phase compositions and

transitions [2,3]
▶ Additional system of non-linear equations (computationally intensive)

• Correlation-Based Calculations:
▶ Use pre-computed flash results over a discretized space of primary

variables
▶ Rely on correlation formulas to approximate equilibrium properties,

e.g., using NaCl-H2O phase diagram [1]

[1] Driesner, T., & Heinrich, C. A. (2007). The system H2O–NaCl. Part I: Correlation formulae for phase relations in
temperature–pressure–composition space from 0 to 1000°C, 0 to 5000 bar, and 0 to 1 XNaCl. Geochimica et Cosmochimica
Acta, 71(20), 4880-4901.
[2] Gharbia, I. B., Haddou, M., Tran, Q. H., & Vu, D. T. S. (2021). An analysis of the unified formulation for the equilibrium
problem of compositional multiphase mixtures. ESAIM: Mathematical Modelling and Numerical Analysis, 55(6), 2981-3016.
[3] Lauser, A., Hager, C., Helmig, R., & Wohlmuth, B. (2011). A new approach for phase transitions in miscible multi-phase
flow in porous media. Advances in Water Resources, 34(8), 957-966.



Correlation Formulation of NaCl-H2O System

Evaluation range

For each τ ∈ yx, the correlation [1,2] is given as

τ̃ : D −→ R
x̃ 7−→ τ := τ̃(x̃)

D = [0, 5000] bar× [0, 1000]◦C× [0, 1] (Use Regula-Falsi
method to transform x̃ to x-space).

Offline
• Compute each τ over the pre-discretized domain of
primary quantities with uniform or adaptive
resolution

• Derive ∂xτ using finite difference method
• Save grid values and derivatives in VTK format

Online

• At any (p,h,zNaCl), use VTK data to interpolate the
values and derivatives as needed

[1] Guo, Z., et al. (2021). swEOS: Salt-water equation of state (1.7.0). Zenodo.
[2] Driesner, T., & Heinrich, C. A. (2007). Correlation formulae for H2O–NaCl. Geochimica et
Cosmochimica Acta, 71(20), 4880-4901.

x̃ = (p, T, zNaCl)
x = (p, h, zNaCl)

Saltwater phase diagram [2].



Physical Quantities in Correlation-Based Formulation

• To determine other phase-specific physical quantities, such as
density or viscosity, for each phase γ, we define the quantity θγ by
solving the equation:

gγ(x, y, θγ) = 0

• Relationship is typically established using suitable equation of state
(EoS) combined with appropriate mixture rules



Solution Strategy (Monolithic)

Overall Solution at Each Time Step:

Assume that full system of unknowns is:

Xt =

(
xt

yt

)

• Spatial Discretization: Multipoint Flux Approximation (MPFA) method
with an upwind scheme applied for advective terms

• Temporal Discretization: Implicit Euler method

Non-Linear System:

G(Xt) = 0

Newton Linearization:

J(Xt,n) (Xt,n+1 − Xt,n) = −G (Xt,n)



Numerical Experiments
• 1D Advection-Dominated (Constant Temperature):

▶ Pure water, single-phase and supercritical fluid flow
▶ Pure water, two-phase flow

• 2D Convection-Dominated (Constant Heat Flux) without gravity:

Implementation in PorePy [1]:

Benchmark with CSMP++ (developed by Stephan Matthai and colleagues at ETH Zurich) [2].

[1] Keilegavlen, E., Berge, R., Fumagalli, A., Starnoni, M., Stefansson, I., Varela, J., & Berre, I. (2021). Porepy: An open-source software for simulation of multiphysics processes in
fractured porous media. Computational Geosciences, 25, 243-265.
[2] Weis, P., Driesner, T., Coumou, D., & Geiger, S. (2014). Hydrothermal, multiphase convection of H2O-NaCl fluids from ambient to magmatic temperatures: A new numerical
scheme and benchmarks for code comparison. Geofluids, 14(3), 347-371.



1D Advection-Dominated

Common model parameters:
• Domain: 2000× 10m

• Abs perm: 10−15m2 (isotropic)

• Component: H20

• Relperm: linear

• Pressure and energy equations are active

• x = (p, h)

• Grid cell size: 10m

• At BCs and ICs: h := h̃(p,T )
• δt ∈ [100, 365] days
• Convergence tol: 10−3



1D Advection Dominated (Single-Phase)

Three Cases: Single-Phase/Fluid Flow

Case 1: Liquid Phase

• pin = 50MPa,
pout = 25MPa

• Tin = 350◦C,
Tout = 150◦C

Case 2: Supercritical Fluid

• pin = 40MPa,
pout = 20MPa

• Tin = 450◦C,
Tout = 300◦C

Case 3: Vapor Phase

• pin = 15.0MPa,
pout = 1.0MPa

• Tin = 500◦C,
Tout = 300◦C



1D Advection Dominated (Two-Phase)

Case 1: Pure Water Two-Phase (High Pressure Gradient)

• BCs:
▶ pin = 20.0MPa, pout = 1.0MPa
▶ Tin = 400◦C, Tout = 150◦C

• Residual liquid saturation (Rl): 0.3

• Residual vapour saturation (Rv ): 0.0

• Relperm of liquid:

krl(sl) =

{
0 if sl ≤ Rl

sl−Rl
1−(Rl+Rv )

if sl > Rl

• Relperm of vapor:

krv (sv ) =
sv − Rv

1− (Rl + Rv )



1D Advection Dominated (Two-Phase)

Case 1: Pressure -Temperature and Saturation Progressions

(High Pressure Gradient)

Porepy

CSMP++



1D Advection Dominated (Two-Phase)

Case 2: Pure Water Two-phase Flow (Low Pressure Gradient)

• BCs:
▶ pin = 4.0MPa, pout = 1.0MPa
▶ Tin = 300◦C, Tout = 150◦C

• Residual liquid saturation (Rl): 0.3

• Residual vapour saturation (Rv ): 0.0

• Relperm of liquid and vapour: same with high pressure gradient case



1D Advection Dominated (Two-Phase)

Case 1: Pressure-Temperature and Saturation Progressions

(Low Pressure Gradient)

Porepy

CSMP++



2D Convection-Dominated with Constant Heat Flux

Pure Water Liquid Phase

• Domain: 9× 3 km
• BCs:

▶ ptop = 0.1MPa, Ttop = 10◦C
▶ Imperbeable sides and bottom

• ICs: pinitial = hydrostatic pressure, Tinitial = 10◦C
• Constant heat flux (qe) over 1km at bottom center: 5W/m3

• No gravity

[1] Weis, P., Driesner, T., Coumou, D., & Geiger, S. (2014). Hydrothermal, multiphase convection of H2O-NaCl fluids from ambient to magmatic
temperatures: A new numerical scheme and benchmarks for code comparison. Geofluids, 14(3), 347-371.



2D Convection-Dominated with Constant Heat Flux

Temperature-Pressure Evolution after 5 kyrs



Conclusion

• Developed a unified compositional model combined with
pre-computed flash calculation for multiphase geothermal reservoir
simulation

• Implemented in PorePy for high-enthalpy and single component
two-phase flow

• Achieved good agreement with existing benchmark models

• Applications in geothermal energy extraction, predicting
temperature-pressure dynamics and phase transitions



Local Equilibrium Model

Motivation:

• Avoid interpolation and additional error.
• Advanced strategies for equilibrium calculations without relying on an a-priori
discretized thermodynamic space.

• Step towards generality in terms of thermodynamic modeling (EoS) and parameter
space (p, T, h, u, v).

Outline of unified flash
The persistent variable approach requires a uniform formulation of the phase equilibrium
conditions [1].

• Static phase context γ = 1, 2, . . . ,Np.
• Phase appearance & disappearance is handled with inequality constraints 0 ≤ yγ ≤ 1.
• Introduction of extended partial fractions χ̃ξγ for each phase γ

χξγ =

χ̃ξγ yγ > 0

χ̃ξγ∑
ζ χ̃ζγ

yγ = 0
, 0 ≤ 1−

Np∑
ζ=1

χ̃ζγ ,

as mathematical extensions for the case yγ = 0.

[1] Ben Gharbia et al. An analysis of the unified formulation for the
equilibrium problem of compositional multiphase mixtures. ESAIM (55) 6, 2981-3016 (2021)



Unified equilibrium conditions: Optimization approach

Locally, we consider the thermodynamic state of the fluid defined in terms of zξ and two
additional state functions σ

σ ∈ {{p,T}, {p, h}, {v ,T}, {v , u}, {v , h}}.

Secondary Variables (NpNc + 2(Np − 1) fractions):

ỹσ = {p and/or T} ∪ {sγ : γ = 1, . . . ,Np − 1} ∪ {yγ : γ = 1, . . . ,Np − 1}
∪ {χ̃ξγ : ξ = 1, . . . ,Nc , γ = 1, . . . ,Np}.

Reference phase parameters (Closure relation 3):

sNp := 1−
Np−1∑
γ=1

sγ , yNp := 1−
Np−1∑
γ=1

yγ

→ primary variables can be seen as transport of thermodynamic target state,
→ secondary variables as local, non-linear alteration of transport.



Find y⋆σ such that

y⋆σ = argmin
y

fσ(y)

with: zξ −
Np∑
γ=1

χ̃ξγyγ = 0, ∀ξ,

yγ ≥ 0, ∀γ.

fσ(y) is a function to be minimized depending target state σ . In fact, we again obtain a map

τ⋆σ : x 7−→ τ⋆σ(x) = y⋆ ,

with τ⋆σ not being an interpolation, but the solution to the σ-flash problem.
Exemplarily,

fp,T = g (Gibbs energy minimization),

fp,h = −S =
1

T
(g − h) (entropy maximization).

By virtue of thermodynamic relations, the target function can always be chosen to be of the
following form [1]:

fσ(y) = fσ(y, g(y))

.

[1] Lipovac et al. Unified Flash Calculations with Isenthalpic and Isochoric Constraints.
FPE 578, 113991 (2023)



With fσ(y) = fσ(y, g(y)) and standard optimization techniques, the semi-smooth first-order
conditions are of form

Fσ(x, y) = ∇yfσ =

 Λ(y)

Υσ(y)

min{Γ(y), λ(y)}

 = 0 ,

with

Λ(y) =


(
χ̃ξγ − χ̃ξNp

φξNp

φξγ

)
ξ=1...Nc

γ=1...Np−1(
zξ −

∑Np

γ=1 χ̃ξγyγ
)
ξ=1...Nc

 , Γ(y) =
[
(yγ)γ=1...Np

]
, λ(y) =

[(
1−

∑Nc
ξ=1 χ̃ξ,γ

)
γ=1...Np

]
.

Using the unified formulation and an optimization approach, we arrived at a general mathematical
structure of the flash problem, where only Υσ varies:

ΥpT = [−] , Υph =

h −
Np∑
γ=1

yγhγ(y)

 .



Coupling with flow & transport

With G (xt , yt) denoting the discretized balance equations and
x = [p, h, z1, . . . , zNc−1], the unified compositional formulation using the
isenthalpic flash can be written as[

G (xt , yt)
Fph(x

t , yt)

]
= 0.

Numerical Solution strategies

While flow & transport progress in some non-zero characteristic time, the
local phase equilibrium is instantaneous.

The stiffness of the system in the general case (EoS) makes it difficult to
solve above system without a splitting-type approach.



2D Flash calculations as resolutions of instant-time scale
for multiple flow regimes

• A Semi-smooth Newton solver with a
Schur complement technique is applied on
the global system.

• In between iterations, the flash problem is
solved in every cell in parallel.

• The numerical method to obtain τ⋆(xti )
can be any suitable optimization algorithm
[1].

• The pT-flash as a subset of the ph-flash
can be used in areas with a less volatile
flow regime.

• Ongoing work explores above mentioned
options.

[1] Vu et al.A new approach for solving nonlinear algebraic systems with
complementarity conditions. Application to compositional multiphase equilibrium
problems, IMACS (190), 1243-1274 (2021)



Conclusion

• A persistent variable formulation for both flow & transport problem,
and thermodynamic equilibrium problem leads to a global and closed
mathematical model.

• Flash calculations can be used to resolve the instantaneous
timescale.

• Computational cost, as a price for flexibility, can be significantly
compensated for using the unified formulation and an efficient
parallelization.


