DARTS - thermodynamics workshop TU Delft

CALYSTO: an integrated approach for CO₂ transport and storage into depleted gas reservoirs

Jean-Claude Hild EBN jean-claude.hila@ebn.nl

Energising the transition

CALYSTO thermodynamical description

□ Impact of CO₂ composition on PORTHOS project

Conclusions

CCS projects need integrated simulation tools

- EBN has developed its own "in-house" modeling tool devoted to CO₂ injection in depleted gas reservoirs
- CALYSTO (CArbon Low enthalpY Storage Tool)

Platform P18 • Physic based model allowing for thermal and transient simulation • Applied to CO₂ modeling challenges (pressure-enthalpy flash) Fully coupling of surface network, wells and reservoirs • Simulations must be fast (few minutes on a laptop)

 \rightarrow implies simplifications and short-cuts

Overall PORTHOS model

D Specificities

• From emitters down to P18 reservoirs, through pipelines, compressor station and wells

□ Fully coupled network, wells and reservoir(s) model

- Physics based model
 - Pipe/well description
 - Physical laws: mass, momentum and energy balance
 - External layers (pipe insulation/well completion) and soil/rocks
 - Reservoir description
 - 3D unstructured grid trying to describe near wellbore and far field evolution
 - Physical laws: CO₂ and water mass balances and energy balance

Finite difference method

1500

£ 2000

2500

3000

ebn

450

CO₂ PVT

- Phase envelope is narrow (even not existing for pure CO₂) in P-T diagram
- Thermodynamical conditions in CO₂ projects are wide → the fluid might change phase
- Thermal exchanges are key to model CO₂ behavior
- Specific EOS must be used
- In classical reservoir simulators, p and T are primary variables... but unsuitable for CO₂ projects because it's impossible to model 2phase conditions
 - enthalpy must replace temperature as primary variable
 - equations must be written using p-h (pressure enthalpy) variables

PVT flash

- Instead of computing the EOS for each cell at each timestep (which is very time consuming), thermodynamical properties (ρ, μ...) are <u>interpolated</u> between values stored in <u>predefined</u> tables
- These tables are vs p and h (not p and T): $\rho(p,h),$ T(p,h), $\mu(p,h)$
- Δp = 1 bar (close to critical point) up to 20 bar (far from critical point)
- Δh = 5 kJ/kg (in 2 phase domain), Δh = 10 kJ/kg (in single phase)
- EOS
 - Span and Wagner for pure $\rm CO_2$
 - GERG 2008 for CO₂ mixture

CALYSTO thermodynamical desc

Consequence on well profiles

- Density profiles are not "perfect" due to linear interpolation
- Same for the fluid velocity profiles
- ightarrow CALYSTO's approach is not fully accurate, but it is fast
- \rightarrow Compromise between accuracy and computational efficiency

Consequence on BHP evolution vs time (single layer reservoir)

• BHP evolution also shows small "oscillations" due to linear interpolation of thermodynamical properties

- ightarrow CALYSTO's approach is not fully accurate, but it is fast
- \rightarrow Compromise between accuracy and computational efficiency

Consequence on BHP evolution vs time (single layer reservoir)

• BHP evolution also shows small "oscillations" due to linear interpolation of thermodynamical properties

- ightarrow CALYSTO's approach is not fully accurate, but it is fast
- \rightarrow Compromise between accuracy and computational efficiency
- Remark: the effect disappears with reservoir heterogeneities or layering

- CALYSTO benchmark against OLGA
 - Pure CO₂ (PVT according to Span and Wagner EOS), pseudo steady state conditions
 - No slippage between phases in the well
- CALYSTO benchmark against GEM
 - 4 layers reservoir NWB, Well bottom hole boundary conditions imposed: injection rate and injected fluid temperature, pure CO₂
 - Logarithmic mesh used in CALYSTO, constant cell size used in GEM: GEM model is finer far from the well, CALYSTO mesh is finer close to the well

\rightarrow Excellent agreement: mismatch remains in the range ±1bar and ±1degC

PORTHOS project

Rate

- Average: 2.5 MTPA (megatonne per annum)
- Maximum rate = 100 kg/s (~ 3.2 MTPA)
- Reservoir
 - Capacity: 37 MT (megatonne) \rightarrow ~15 years of injection
 - Pressure
 - At injection start-up ~20 bar
 - At end of injection ~3XX bar → pressure increase ~20 bar/year ~2 bar/month

ebn

Boundary conditions

- Emitters CO₂ stream composition will vary in time
- For PORTHOS project, expected maximum impurity content ~ 5%, most likely impurity content ~1%
- Main components being Ar, N₂, CO, CH₄... and a complex mixture of many other impurities at ppm level (H₂S, SO_x, NO_x, H₂O...)

 \rightarrow Purpose here is not to tackle impurity partitioning, liquid drop-out, acid corrosion..., but to evaluate the impact of CO₂ stream composition on the operating conditions of a CCS project.

Impact of CO₂ composition on

Phase envelope

	Pure CO ₂	CO ₂ + 1% impurities	CO ₂ + 5% impurities
Tc (°C)	31.0	30.7	28.4
Pc (bar)	73.8	75.9	81.5
Critical density (kg/m³)	467.6	452.2	456.3

Phase envelope

- Dew curve of the phase line weakly affected by impurity content
- Bubble curve more impacted by the impurity content \rightarrow impact on operating conditions of any CCS project

Density

• Pure CO₂ vs CO₂ + 5% impurities

	Pure CO ₂	CO ₂ + 5% impurities
0°C - 60 bar	948.2	
100°C - 300 bar	661.9	
100°C - 20 bar	29.8	

CO₂ density vs pressure and temperature

Density

• Pure CO₂ vs CO₂ + 5% impurities

	Pure CO ₂	CO ₂ + 5% impurities
0°C - 60 bar	948.2	876.4
100°C - 300 bar	661.9	618.9
100°C - 20 bar	29.8	29.0

CO_2 + 5% impurities density vs pressure and temperature

Density

• Pure CO₂ vs CO₂ + 5% impurities

	Δ density
0°C - 60 bar	71.8
100°C - 300 bar	43.0
100°C - 20 bar	0.8

 \triangle density = Pure CO₂ density - CO₂ + 5% impurities density vs pressure and temperature

ebn

Impact on the operating conditions

- Minor impact on HP inlet pressure ~ 1 bar
- Arrival temperature at platform manifold impacted by a few °C

ebn

Impact on the operating conditions

- Minor impact on HP inlet pressure ~ 1 bar
- Arrival temperature at platform manifold impacted by a few °C
- Impact is bigger at wellhead: up to 30 bar and 20°C

ebn

Impact on the operating conditions

- Minor impact on HP inlet pressure ~ 1 bar
- Arrival temperature at platform manifold impacted by a few °C
- Impact is bigger at wellhead: up to 30 bar and 20°C
- Reason is partially in the pipes, but mainly in the reservoir which pressure increases more rapidly with higher impurity content (because of lower density)

Well Operating envelopes

- Well challenges (some of)
 - While injecting $CO_{2'}$ wellhead conditions can go to very low temperatures
 - \rightarrow minimum injection rate is required to prevent from annulus freezing, thermal failure equipment...
 - Maximum injection rate dictated by network pressure constraint (or other constraint: erosion velocity...)

PORTHOS Operating Envelopes (pure CO₂)

	Min rate	Max rate
1 well	~60 ton/hr	~140 ton/hr
2 wells	~90 ton/hr	~240 ton/hr
3 wells	~120 ton/hr	~340 ton/hr
4 wells	~150 ton/hr	~460 ton/hr

Impact of CO₂ composition on PORTH(

Well Operating envelopes

- Well challenges (some of)
 - While injecting $CO_{2^{\prime}}$ wellhead conditions can go to very low temperatures
 - → minimum injection rate is required to prevent from annulus freezing, thermal failure equipment...
 - Maximum injection rate dictated by network pressure constraint (or other constraint: erosion velocity...)

Well configuration

\square PORTHOS Operating Envelopes (CO₂+5% impurities)

	Min rate	Max rate
1 well	~55 ton/hr	~130 ton/hr
2 wells	~85 ton/hr	~225 ton/hr
3 wells	~120 ton/hr	~320 ton/hr
4 wells	~150 ton/hr	~420 ton/hr

Conclusion

ebn

CCS projects need *integrated simulation tools*

CALYSTO is a fully coupled network, wells and reservoir(s) model

One main simplification is related to thermodynamical description using PVT tables

- Not fully accurate, but fast
 - \rightarrow Compromise between accuracy and computational efficiency
 - → Run time is in minutes, not hours/days, because of simplifications/short-cuts
- Drawbacks: many phenomena can't be tackled (species partitioning, mixing, liquid drop out, corrosion...)

□ Is used for several CO₂ CCS projects

