Thermalcompositionalreactive simulation with DARTS

Denis Voskov

CO_2 injection into depleted fields

- \triangleright Injection into depletion reservoir
	- o Pressurizing reservoir
	- o Joule-Thomson cooling
		- Hydrate formation
	- o Salt precipitation
		- Capillary backflow
- \triangleright Injectivity interruption
	- o Pressure depletion
	- o Two-phase cooling
		- Hydrate formation

 $\widetilde{\mathbf{T}}$ UDelft

Challenge with CO2 expansion

Thermodynamics of CO $_{\rm 2}$ -gas-brine

▪ Gas component model: ignore effects of water component presence in gas phase

$$
f_i^g = p\Phi_i y_i
$$
\n
$$
f_i^g = f_i^a
$$
\n
$$
f_i^a = h_i \gamma_i x_i
$$
\nSubject

\n
$$
K_i = \frac{y_i}{x_i} = \frac{h_i \gamma_i}{p\Phi_i}
$$
\nActivity model

• Derive enthalpy directly from EoS for gas, liquid and aqueous phases

$$
h^{g} = -RT^{2} \sum n_{i} \left(\frac{\partial \ln \phi_{i}}{\partial T} \right), \quad h^{a} = -RT^{2} \sum n_{i} \left(\frac{\partial \ln \gamma_{i}}{\partial T} \right)
$$

Wapperom et al., SPE RSC, 2023

Henry

constants

PDE for Energy Transition applications

$$
g(\omega) = a_t(\omega, \xi) + \nabla \cdot b(\omega, \xi) + \Delta c(\omega, \xi) + d(\omega, \xi) = 0
$$

$$
\xi = \{G, \phi_0, K_0\}
$$

$$
\omega = \{p, H, z\}
$$

Compressibility,
\nphase change
\nand convection
\n
$$
g(\omega) = \frac{\phi_0 V}{\Delta t} [\alpha(\omega) - \alpha(\omega_n)] + \sum_l v_l^l \beta(\omega) = 0
$$
\n
$$
\beta_c(\omega) = \frac{1}{\Delta} \sum_{j=1}^{n_p} x_{cj}^l \rho_j^l \frac{k_{rj}^l}{\mu_j^l}
$$

$$
g(\omega) = \frac{\phi_0 V}{\Delta t} [\alpha(\omega) - \alpha(\omega_n)] + \sum_l v_l^l \beta(\omega) + \sum_l D^l (\chi^l - \chi) \gamma(\omega) + V \delta(\omega) = 0
$$

+ diffusion and
reactions

$$
\gamma_c(\omega) = c(p) \sum_{j=1}^{n_p} x_{cj} \rho_j s_j d_{cj}, \qquad \delta_c(\omega) = \sum_{k=1}^{n_k} v_{ck} r_k
$$

 $\mathbf{Q} = -\mathbf{Q}$.

5

$$
\frac{\partial g}{\partial \omega} = \frac{\partial \alpha}{\partial \omega} \overline{a}(\omega, \xi) + \frac{\partial \beta}{\partial \omega} \overline{b}(\omega, \xi) + \frac{\partial \gamma}{\partial \omega} \overline{c}(\omega, \xi) + \frac{\partial \delta}{\partial \omega} \overline{d}(\omega, \xi) + \overline{f}(\omega, \xi)
$$

$$
\left|\widehat{\beta_c} - \beta_c\right| \le cA^2 \sup_{\omega} |\nabla^2 \beta_c|
$$

Voskov, JCP 2017

Open Delft Advanced Research Terra Simulator

adaptive. NO set the set of \sim Accumulation Convection Compositional (C++/Libraries) Geothermal (Python, IAPWS-97) $\begin{array}{ccc}\nD & D & D \\
D & D & D\n\end{array}$ Thermal compositional (C++/Libraries) Reaction Chemical formulation (Python/PHREEQC) adaptive_inter DARTS-engine: C++ & CUDA DARTS-physics: hybrid $a_t(\omega,\xi) + \nabla \cdot b(\omega,\xi) + \Delta c(\omega,\xi) + d(\omega,\xi) = 0$ $\alpha(\omega), \beta(\omega), \gamma(\omega), \delta(\omega), ...$ Voskov et al., JOSS, 2024

UDelft

DARTS Delft Advanced Research Terra Simulator

- Operator-Based Linearization
	- Parametrization of thermodynamics
	- Adaptivity in parametrization
- Flexibility and performance
	- Flexible nonlinear physics
	- Implementation at GPU
	- Adjoint capabilities

Delft

- Complex thermodynamics
	- Thermal-compositional formulation
	- Fully coupled chemistry
	- Fully coupled geomechanics

Lyu et al., IJGGC, 2021; Wang et al., RENE, 2021

8

Equilibrium chemical reactions

Chemical Equilibrium with Constant Concentrations

Component mass balance:

Chemical reactions:

 $a_c + l_c = Vr \times E \Rightarrow a_e + l_e = 0$

 $K_{sp} - Q_{sp} = 0$ equilibrium

$$
a_c^k + l_c^k = \boldsymbol{v} \boldsymbol{r}^k
$$
kinetic

Equilibrium reactions in brine- $CO₂$ system

$$
\frac{\partial}{\partial t} (\phi^T \rho_t^E z_i^E) + \text{div}(\boldsymbol{e}_i \boldsymbol{l}) = 0
$$
\n
$$
f_i^g = f_i^l \qquad \rho_t^E = \rho_t \sum_{i=1}^{n_e} \boldsymbol{e}_i \boldsymbol{z}
$$
\n
$$
\prod_{c=1}^{n_c} a_c^{v_{cq}} - K_q = 0 \qquad \boldsymbol{z}^E \sum_{i=1}^{n_e} \boldsymbol{e}_i \boldsymbol{z} - \boldsymbol{E} \boldsymbol{z} = 0
$$

Kala and Voskov, Comput. Geosci, 2020

Multiphase flow with reactions (1D benchmark)

CO2 injection into calcite core

Carbon dioxide dissolution:

 $CO_{2(q)} \rightleftharpoons CO_{2(aq)}$

- Acid formation:
	- $CO_{2(aq)} + H_2O \rightleftharpoons H_2CO_3$ $H_2CO_3 \rightleftharpoons H^+ + HCO_3^ HCO_3^- \rightleftharpoons H^+ + CO_3^{2-}$,
- Calcite dissolution:

TUDelft

 $CaCO₃ + H⁺ \rightarrow Ca²⁺ + HCO₃⁻$, $CaCO₃ + H₂CO₃[*] \rightarrow Ca²⁺ + 2HCO₃⁻,$ $CaCO_{3} \rightarrow Ca^{2+} + CO_{3}^{2-}.$

Other aqueous reactions considered: $H_2O \rightleftharpoons H^+ + OH^-,$ $2H_2O \rightleftharpoons O_2 + 4H^+ + 4e^ 2H^{+} + 2e^{-} \rightleftharpoons H_{2}$ $CO_3^{-2} + 2H^+ \rightleftharpoons CO_2 + H_2O,$ $CO_3^{-2} + 10H^+ + 8e^- \rightleftharpoons CH_4 + 3H_2O,$ $Ca^{2+} + H_2O \rightleftharpoons CaOH^+ + H^+,$ $Ca^{2+} + CO_3^{-2} + H^+ \rightleftharpoons CaHCO_3^+.$

Snippe et al., IJGGC, 2019

Use PHREEQC for equilibrium chemistry calculation.

Element balance reduction

 q_6 q_{1} q_{2} q_3 q_4 q_{5} k_1 H_2O -1 $\mathbf{1}$ -1 $\boldsymbol{0}$ $\boldsymbol{0}$ $\boldsymbol{0}$ $\boldsymbol{0}$ $\begin{bmatrix} -1 & 0 & 1 & -1 & 0 \ 1 & -1 & -2 & 1 & 0 \ 1 & 0 & 0 & 0 & 0 \ 0 & 0 & 1 & 0 & 0 \ 0 & 1 & 0 & 0 & 0 \ 0 & -1 & -1 & 0 & -1 \ 0 & 0 & 0 & 0 & 1 \ 0 & 0 & 0 & -1 & -1 \ 0 & 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$ H^{\pm} -1 $\boldsymbol{0}$ $\begin{matrix}0\0\0\0\end{matrix}$ $OH^ \mathbf{0}$ $CO₂$ $\boldsymbol{0}$ $HCO_3^ \boldsymbol{0}$ $S = CO_3^{2-}$ -1 $\mathbf{1}$ $\bf{0}$ $\boldsymbol{0}$ $CaCO₃$ Ca^{2+} -1 $1\,$ $\boldsymbol{0}$ $CaOH^{+}$ $\boldsymbol{0}$ $\mathbf{1}$ $CAHCO₃⁺$ $\boldsymbol{0}$ $CaCO_{3,solid}$ $\mathbf{0}$ -1

$$
H_2O \t H^+ \t OH^- \t CO_2 \t HCO_3^- \t CO_3^{2-} \t ... \t CaCO_{3,solid}
$$
\n
$$
\mathbf{E} = \begin{bmatrix} 1 & 1 & 0 & 1 & 0 & ... & 0 \\ 0 & 1 & 0 & 1 & 2 & 3 & 3 & ... & 3 \\ 0 & 0 & 0 & 1 & 1 & 1 & ... & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & ... & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & ... & 1 \end{bmatrix}
$$
\n
$$
E = \begin{bmatrix} 2 & 1 & 1 & 0 & 1 & 0 & ... & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & ... & 1 \\ 0 & 0 & 0 & 0 & 0 & ... & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & ... & 1 & 1 \end{bmatrix}
$$

$$
\mathbf{S}_{C\times R} = \begin{bmatrix}\n\mathbf{Q}_{Q\times K} & \mathbf{I}_{1, Q\times Q} \\
-\mathbf{I}_{2, K\times K} & \mathbf{S}_{3, K\times Q} \\
\mathbf{S}_{1, (C-R)\times K} & \mathbf{S}_{2, (C-R)\times Q} & \mathbf{S}_{3, K\times Q}\n\end{bmatrix}
$$
\n
$$
\mathbf{E}_{1(E\times C)} = \begin{bmatrix}\ne_{11} & e_{12} & \dots & e_{1C} \\
e_{21} & e_{22} & \dots & e_{2C} \\
\vdots & \vdots & \ddots & \vdots \\
e_{E1} & e_{E2} & \dots & e_{EC}\n\end{bmatrix}
$$
\n
$$
\mathbf{E}_{2(K\times C)} = \begin{bmatrix}\n-\mathbf{S}_{1, K\times Q} & -\mathbf{I}_{2, K\times K} & \mathbf{O}_{K\times (C-R)}\n\end{bmatrix}
$$

$$
\frac{\partial \mathbf{n}}{\partial t} + \mathbf{l} = \mathbf{V} \mathbf{r},
$$

$$
\frac{\partial (\mathbf{E} \mathbf{n})}{\partial t} + \mathbf{E} \mathbf{l} = \mathbf{E} \mathbf{S} \mathbf{r} = \begin{bmatrix} \mathbf{E}_1 \mathbf{S} \mathbf{r} \\ \mathbf{E}_2 \mathbf{S} \mathbf{r} \end{bmatrix} = \begin{bmatrix} 0 \\ \mathbf{r}_k \end{bmatrix}
$$

Modeling of dissolution at core scale

Step 1: porosity interpretation (image subtraction, filtering, gridding)

Step 2: modeling of dissolution (combination of DARTS + PHREEQC)

Margert, MSc thesis, 2019

FluidFlower benchmark

Generation of prior realizations

Digitizing of tracer test

History matching using RML (single realization)

Tracer observations (high resolution images) Inversed model (RML, 18,278 forward runs for 100 priors)

$$
E(u) = \frac{1}{2}(u - u_{\text{ref}})^{\text{T}} C_M^{-1}(u - u_{\text{ref}}) + \frac{1}{2}(G(u) - d_{\text{obs}} + \epsilon)^{\text{T}} C_D^{-1}(G(u) - d_{\text{obs}} + \epsilon)
$$

Data Assimilation for FluidFlower experiments

- **Models: 100 history matched permeability maps**
- **Temperature:** $23^{\circ}C \pm 2$, normal distribution
- Diffusion: $2 \cdot 10^{-10} 2 \cdot 10^{-9}$, log-normal distribution
- Two phase: Corey parameters with std from 5 to 50%, normal distribution

CCS in depleted fields: Joule-Thomson cooling

st Saturation Process cycle 2

Salt precipitation

PVI4300

JT-cooling validation

Cooling for Pure CO₂

JT effect at various scales

JT in CO2-CH4-H2O system at experimental scale, 1 sec JT in CO2-CH4-H2O system at experimental scale, 10 sec

Radial model results

CCS in depleted fields: impact of salt precipitation

st Saturation Process cycle 2

Salt precipitation

Salt precipitation: core flood experiments

Gas and salt saturations in a homogeneous core

3D reconstruction of salt in Bentheimer core

Permeability reduction in a homogeneous core

Salt mainly precipitated at inlet regions and permeability had a huge reduction in it

Yan et al., in prep.

Simulation results with DARTS

Impact of pore structure, wettability and direction

CO2 injection direction

Yan et al., JCIS, 2025

CCS in depleted fields: risk of hydrate formation

Salt precipitation

Thermodynamic models for hydrates

- Van der Waals and Platteeuw (1958)
	- **Chemical potential change upon cage filling**

$$
\frac{\Delta\mu_{w,H}}{RT} = \frac{\mu_{w,H}}{RT} - \frac{g_{w,\beta}}{RT} = \sum_m \nu_m \ln\left(1 - \sum_j \theta_{jm}\right)
$$

Fugacity related to reference phase

$$
f_{w,H} = f_{w,A} \exp\left[\frac{\Delta \mu_{w,H} - \Delta \mu_{w,A}}{RT}\right]
$$

Langmuir 'adsorption'

$$
\theta_{jm} = \frac{C_{jm} f_j}{1 + \sum_k C_{km} f_k}
$$

Hydrate dissociation

- Class 3 hydrate deposit
	- **Radial reservoir**
	- **Partially saturated with CH₄-hydrate**
	- **Pressure at well 27 bar**

Impact of water saturation on permeability

Note: In exp 10, for the first 2 cycles, the normalized permeability was calculated based on the differential pressure, while for the third cycle brine permeability test was performed in the presence of hydrate to validate the previous calculation.

Permeability is directly influenced by hydrate saturation, which is, in turn, dependent on the water saturation level.

Acknowledgments

- **DARTS team:** Mark Khait, Xiaocong Lyu, Yang Wang, Xiaoming Tian, Stephan de Hoop, Kiarash Mansour Pour, Artur Palha, Aleks Novikov, Michiel Wapperom, Yuan Chen, George Hadjisotiriou, Gabriel Serrao Seabra, Luisa Orozco
- **ASSET team: Rouhi Farajzadeh, Mahnaz Aghajanloo, Lifei Yan, Michiel Slob, Sadegh** Taghinejad, Manon Schellart, Georgios Ntentopoulos
- **Students and collegues: Dan Nichita, Juan Diego Heringer, Andrey Margert, Michel Kern,** Brahim Amaziane, Jan Norbotten, Bernd Flemisch, James Gunning

open-DARTS

https://darts.citg.tudelft.nl

Time for Questions and Answers

