Multiphase equilibrium calculations with DARTS-flash

DARTS-thermodynamics workshop, 12 November 2024 Michiel Wapperom, Juan Heringer, Dan Nichita and Denis Voskov

tu Deft

Predictive Modelling of Hydrate Formation and Dissociation

Michiel Wapperom *Under supervision of:* Dr. Denis Voskov, Xiaocong Lyu & Dr. Geir Ersland

Delft, 25 November 2019

Delft, 25 November 2019

3.3 Thermodynamics I

17

When we inject CO_2

Density of CO₂, kg/m3

PAYS DE L'ADOU

Thermodynamic equilibrium

• Equilibrium state:

Thermodynamic models for fluid phases

Van der Waals family EoS

$$P = \frac{RT}{\bar{V} - b} - \frac{\alpha(T)a}{(\bar{V} + \delta_1 b)(\bar{V} + \delta_2 b)}$$

- In aqueous phase:
 - Polar and associating molecules
 - Ionic and coulombic interactions

CO₂ solubility in brine

Adequate alternative?

P-V diagram of CO₂

Compressibility factor Z of CO_2

Multiphase equilibrium

$$D = \left(1 - \sum_{i=1}^{n_c} Y_i\right) + \sum_{i=1}^{n_c} Y_i (\ln Y_i + \ln \varphi_i(\mathbf{Y}) - d_i)$$

• Stability test with Y, $\ln Y$ or α

$$g_i = \frac{\partial D}{\partial Y_i} = \ln Y_i + \ln \varphi_i(\mathbf{Y}) - d_i$$

Problem size: NC

 $\mathbf{H}\Delta \mathbf{n} = -\mathbf{g}$

- SPD: Cholesky decomposition of *H*
- Not PD: perform SSI step

$$G = \sum_{i=1}^{n_c} \sum_{k=1}^{n_p} n_{ik} \ln f_{ik}$$

Multiphase split with n or ln K

$$(g_i)_k = \frac{\partial G}{\partial n_{ik}} = \ln f_{ik} - \ln f_{iR} = \ln K_{ik} + \ln \varphi_{ik} - \ln \varphi_{iR}$$

Problem size: (NP-1)NC

 $\Delta \mathbf{n} = \mathbf{U}^{-1} \Delta \mathbf{ln} \mathbf{K}$

 $J\varDelta lnK = -g$

$\boldsymbol{J} = \boldsymbol{H} \boldsymbol{U}^{-1} = \boldsymbol{I} + \boldsymbol{\Phi} \boldsymbol{U}^{-1}$

- Better scaled, condition number improved in J
- Non-symmetric: LU factorization of J
- Or: solve Δn and update $\Delta \ln K = U \Delta n$

Gibbs energy analysis of H₂O-CO₂ system

Multicomponent systems: depleted gas field

Number of phases for $H_2O-CO_2-C_1$ at P = 107.0 bar and T = 375.6 K

Number of phases for $H_2O-CO_2-C_1$ at P = 205.0 bar and T = 375.6 K

Number of phases for $H_2O-CO_2-C_1$ at P = 303.0 bar and T = 375.6 K

Data from Huang et al. (1985)

Thermodynamic models for hydrates

- Van der Waals and Platteeuw (1958)
 - Chemical potential change upon cage filling

$$\frac{\Delta\mu_{w,H}}{RT} = \frac{\mu_{w,H}}{RT} - \frac{g_{w,\beta}}{RT} = \sum_{m} \nu_m \ln\left(1 - \sum_{j} \theta_{jm}\right)$$

Fugacity related to reference phase

$$f_{w,H} = f_{w,A} \exp\left[\frac{\Delta\mu_{w,H} - \Delta\mu_{w,A}}{RT}\right]$$

Langmuir 'adsorption'

At hydrate formation conditions

 H_2O-CO_2 mixture at P = 60.0 bar and T = 273.15 K

Multicomponent hydrates

Free-water flash – selective solubility

- Not every chemical species is present in every phase
 - Brine H₂O, ions, CH₄, CO₂, others?
 - Hydrates H_2O and CH_4 , CO_2 , N_2 , etc.
 - Ice H₂O
 - Salt NaCl, CaCl₂, etc.
 - Wax, asphaltenes
 - Solid solutions
- More details by Juan!

3-phase envelope of water/CO₂/NWE mixture

Multiphase equilibrium at other state specifications

- *PT* Isobaric-isothermal
 - Both stability and flash are formulated as unconstrained optimization problem
 - *PT*-flash not able to capture phase transitions
- *PHN* Isobaric-isenthalpic
 - Able to capture phase transitions
 - Suitable for thermal-compositional simulation of isenthalpic processes like in CO₂ injection
- PSN Isobaric-isentropic
 - Compressor and turbines design
- VTN Isochoric-isothermal
 - Phase equilibrium in closed vessels
- UVN Isoenergetic-isochoric

Isenthalpic flash

- Used to avoid convergence issues in thermal-compositional reservoir simulator
- Nested loop a root-finding method (Brent, 1973) that uses PT-flash to update enthalpy H(P, T, n)
- More details by Lingfei!

DARTS-flash v1.0.0

- Features
 - Robust and efficient multiphase PT/PH-flash with hybrid-EoS
 - Augmented free-water flash/Selective solubility methods
 - Solubility curves, phase diagrams, EoS computations, hydrate equilibrium curves
 - (derivatives of flash for process and reservoir simulation)
- Interface
 - C++
 - Python
 - GUI

- gitlab.com/open-darts/darts-flash
- pip install open-darts-flash

Acknowledgements

• We acknowledge TotalEnergies for financial support

