



### Interpolation Strategies For Complex Thermal-Multiphase-Reactive Modeling With Operator-Based Linearization

Aleks Novikov<sup>1</sup>, Denis Voskov<sup>1,2</sup>

- 1. Delft University of Technology, Netherlands
- 2. Stanford University, USA

### **Motivation**

- Thermal-multiphase-reactive compositional modelling is essential for feasibility and performance assessments of
  - CO2 and hydrogen storage, geothermal sites and EOR
- Modeling is challenging
  - assembly is inflexible and resource-intensive
  - necessity to work with third-party thermodynamics and geochemistry solvers
- Advanced modeling techniques can reduce complexities
  - Operator-Based Linearization (OBL)
  - Adaptive parametrization





# **Operator-based Linearization (OBL)**

Group input properties into operators

according to computational needs

- Cover state space with a structured grid
- Evaluate operators at grid nodes
- Interpolate in-between





### **Advantages of Operator-based Linearization**

#### Caching of operators

- Flexibility: works with any kind of user-defined or calculated properties
- Efficiency: example linear interpolation (~10 CPU cycles) vs exponent evaluation (~100 CPU cycles)
- User-friendly model input from Python
  - Convenient integration with third-party libraries
  - Easy to connect to C++ (Python C API, boost.Python, Pybind11, SWIG)
- Various Parametrization Strategies
  - Static parametrization: operators are evaluated beforehand
  - Adaptive parametrization: efficient and accurate in many dimensions





# **Advantages of Operator-based Linearization**

#### Caching of operators

- Flexibility: works with any kind of user-defined or calculated properties
- Efficiency: example linear interpolation (~10 CPU cycles) vs exponent evaluation (~100 CPU cycles)
- User-friendly model input from Python
  - Convenient integration with third-party libraries
  - Easy to connect to C++ (Python C API, boost.Python, Pybind11, SWIG)
- Various Parametrization Strategies
  - Static parametrization: operators are evaluated beforehand
  - Adaptive parametrization: efficient and accurate in many dimensions





# **Advantages of Operator-based Linearization**

#### Caching of operators

- Flexibility: works with any kind of user-defined or calculated properties
- Efficiency: example linear interpolation (~10 CPU cycles) vs exponent evaluation (~100 CPU cycles)
- User-friendly model input from Python
  - Convenient integration with third-party libraries
  - Easy to connect to C++ (Python C API, boost.Python, Pybind11, SWIG)
- Various Parametrization Strategies
  - Static parametrization: operators are evaluated beforehand
  - Adaptive parametrization: efficient and accurate in many dimensions



static parametrization



adaptive parametrization 14-11-2024

6



### Sparse occupancy of state space





6 components: ~0.001%

14-11-2024 7

# **Interpolation strategies**

- Nested static interpolation
  - coarse grid with nested refinement
  - refinement of active hypercubes
  - compromise between accuracy and inability to call Python

#### Multilinear adaptive interpolation

- $0(2^d)$  operations
- accurate but expensive in many dimensions
- Linear adaptive interpolation
  - O(d) operations

)elft

- standard vs Delaunay triangulation
- supported higher dimensions (up to 20 components)





### Example 1 static nested interpolation

- liquid-vapor mixture of 4 components [CO2, C1, C4, C10] with given K-values
- Adaptive interpolation with 1000 points per axis
- Static nested interpolation
  - 10 points per axis initially
  - 10 points per axis in adaptive refinement between time steps

Comparison of adaptive and static nested interpolators



### **Example 2:** Linear interpolation for 20 component fluid

- two-phase 20 components fluid flow
  - CO2, C1, C2, C3, C4, nC4, C5, nC5, C6, C7, C8, C9, C10, C11, C12, C14, C16, C18, C19, C20
- fluid physics is defined by constant K-values
- multivariate linear interpolation in 20 dimensions, 80 points per axis
- inject pure CO2



#### Example 2: Linear interpolation for 20 component fluid

simulation time on a single-core CPU:

- assembly 31.9%
  - interpolation 13.6%
  - point generation 12%
- solution 67.7%



C7 C8 C9 C10 C11 C12 C14 C16 C18 C19 .0e-03 4.6e-02.0e-03 0.02 4.1e-02.0e-03 3.5e-021.1e-03 3.0e-02.3<u>e-03 2.5e-02.1e-03 2.0e-02</u> 1.3<u>e-03 1.6e-02.5e-03 1.0e-021.5e-03 7.1e-03.5e-03 6.4e-03</u>



### **Example 3:** Calcite dissolution in CO<sub>2</sub> injection

- element-based formulation of reactive flow and transport
  - isothermal two-phase flow
  - porosity-permeability relationship  $k/k_0 = (\phi/\phi_0)^4$
  - fixed Corey-like phase permeabilities
- phase viscosities are calculated by CoolProp database
- geochemical speciation and equilibrium from PHREEQC
- reaction kinetics  $r = r_a + r_n$ 
  - acidic reaction  $r_a = a_{H^+} k_{ref}^{(a)} \cdot \exp\left(-\frac{E_{aa}}{R} (T^{-1} T_{ref}^{-1})\right) \Omega (1 SR^p)^q$
  - neutral reaction  $r_n = k_{ref}^{(n)} \cdot \exp\left(-\frac{E_{an}}{R}\left(T^{-1} T_{ref}^{-1}\right)\right)\Omega(1 SR^p)^q$
  - fixed area multiplier  $\Omega = \Omega_0$

**Ú**Delft

• dissolution-precipitation multiplier  $(1 - SR^p)^q$ , p = q = 1



### **Example 3:** Calcite dissolution in CO<sub>2</sub> injection

- geochemical speciation and equilibrium from PHREEQC
- simplified geochemical model for calculation of initial state
- the following classes of reactions are considered during simulation
  - oxidation-reduction reactions
  - acid-base reactions (carbonic acid, carbonate, bicarbonate)
  - complexation and speciation (CaHCO<sup>+</sup><sub>3</sub>, CaCO<sub>3</sub>(aq) complexes)
  - redox environment (methanogenesis)
  - dissolution-precipitation of calcite, aragonite
  - gas equilibria (CO<sub>2</sub>, CH<sub>4</sub>, H<sub>2</sub>, O<sub>2</sub>)











### Example 3: homogeneous 1D setup Calcite dissolution in CO<sub>2</sub> injection

• OBL Interpolation time:

(not-cached) 52% of simulation time (cached) 5% of simulation time



#### Example 3: heterogenous 2D setup Calcite dissolution in CO<sub>2</sub> injection





2

2 4

2

2 4

### Takeaways & Future work

#### Takeaways:

- OBL and adaptive parametrization simplify the assembly of thermal-multiphase-reactive systems, save simulation and development resources
- Linear interpolation is efficient and accurate in many dimensions
- Nested static interpolation can be accurate but not affordable in many dimensions
- Caching is crucial for complex fluid physics, especially while coupling to third-party solvers

#### Future work:

- general PHREEQC-backed thermal two-phase dissolution-precipitation physics in open-darts
- parallel adaptive interpolation in GEOS, millions-cell model modelling
- a big room for improvement of OBL: asynchronous evaluation and interpolation, adaptive sampling strategies







# Thank you!