jQuery UI Accordion - Default functionality

Accurate prediction of temperature and pressure distribution is essential for geothermal reservoir exploitation with cold water re-injection. Depending on our knowledge about the heterogeneous structure of the subsurface, the reservoir development scheme can be optimized and the overall lifetime of the geothermal field can be extended. In DARTS, the molar formulation with pressure and enthalpy as primary variables is selected to solve the governing system describing the geothermal model. Besides, the fully-coupled fully-implicit two-point flux approximation (TPFA) on unstructured grids is implemented to solve the mass and energy conservation equations. For the nonlinear solution, we employ the recently developed Operator-Based Linearization (OBL) approach. The solutions of DARTS is compared with the state-of-the-art simulation frameworks using a set of benchmark tests1.

Fig.1: 2D results comparison between DARTS and TOUGH22 for high-enthalpy test case1

DARTS achieves a good match for both low- and high-enthalpy conditions in comparison to TOUGH22, see Fig.1 for example. Similar accuracy DARTS demonstrated in comparison with AD-GPRS3 with an example shown in Fig.2 for elongated in z-direction example of the 3D geothermal reservoir. At the same time, DARTS provides high performance and flexibility of the code due to the OBL approach, which makes it particularly useful for uncertainty quantification in processes involving complex physics.

Fig.2: Cold water plum propagation (a) and layer-wise error in comparison with AD-GPRS3 (b).


References:

  1. Wang, Y., Voskov, D., Khait, M., Bruhn, D. (2020). An efficient numerical simulator for geothermal simulation: A benchmark study. Applied Energy, 264. doi:10.1016/j.apenergy.2020.114693
  2. O'Sullivan, M.J., Pruess, K., Lippmann, M.J., (2001). State of the art geothermal reservoir simulation, Geothermics, 30 (4), pp. 395-429. doi:10.1016/S0375-6505(01)00005-0
  3. Garipov, T.T., Tomin, P., Rin, R., Voskov, D.V., Tchelepi, H.A., (2018). Unified thermo-compositional-mechanical framework for reservoir simulation, Computational Geosciences, 22 (4), pp. 1039-1057. doi:10.1007/s10596-018-9737-5
  4. Saeid, S., Wang, Y., Daniilidis, A., Khait, M., Voskov, D. and Bruhn, D. (2020). Lifetime and Energy Prediction of Geothermal Systems: Uncertainty Analysis in Highly Heterogeneous Geothermal Reservoirs (Netherlands), World Geothermal Congress. World Geothermal Congress 2020.
  5. Karimi-Fard, M., Durlofsky, L. J., & Aziz, K. (2003). An efficient discrete fracture model applicable for general purpose reservoir simulators. In SPE Reservoir Simulation Symposium. Society of Petroleum Engineers. doi:10.2118/79699-MS
  6. de Hoop, S., Voskov, D. and Bertotti, G. (2019). Uncertainty quantification and history matching for naturally fractured carbonate reservoirs. Third EAGE WIPIC Workshop: Reservoir Management in Carbonates, Qatar. Reservoir Management in Carbonates
  7. Bisdom, K., Bertotti, G. and Nick, H.M. (2016) The impact of different aperture distribution models and critical stress criteria on equivalent permeability in fractured rocks. Journal of Geophysical Research: Solid Earth, 121(5), pp.4045-4063. doi:10.1002/2015JB012657
  8. Wang Y., de Hoop S., Voskov D., Bruhn D., Bertotti G. (2020). Modeling of High-Enthalpy Geothermal Projects in Fractured Reservoirs, World Geothermal Congress. World Geothermal Congress 2020.
  9. de Hoop, S., Voskov, D.V., Vossepoel, and F.C. and Jung, A. (2018) Quantification Of Coarsening Effect On Response Uncertainty In Reservoir Simulation. In ECMOR XVI-16th European Conference on the Mathematics of Oil Recovery. doi:10.3997/2214-4609.201802223
  10. Peng, D.-Y. and Robinson, D.B. (1976). A New Two-Constant Equation of State, Industrial and Engineering Chemistry Fundamentals, 15 (1), pp. 59-64. doi:10.1021/i160057a011
  11. Kritchevsky, I. and Illiinskaya, A. (1945). Partial molal volumes of gases dissolved in liquids. Acta Physicochimica (URSS). doi:10.1016/0378-3812(82)80033-2
  12. Voskov, D.V., Henley, H., Lucia, A., 2017. Fully compositional multi-scale reservoir simulation of various CO2 sequestration mechanisms, Computers and Chemical Engineering, 96, pp. 183-195. doi:10.1016/j.compchemeng.2016.09.021
  13. Kala, K. and Voskov, D. (2019). Element balance formulation in reactive compositional flow and transport with parameterization technique, Computational Geosciences. doi:10.1007/s10596-019-9828-y
  14. de Hoop, S., Voskov, D. (2019). Parametrization Technique for Reactive Multiphase Flow and Transport, In. SIAM Geosciences. Video Presentation at SIAM GS19
  15. Snippe, J., Berg, S., Ganga, K., Brussee, N., Gdanski, R. (2020) Experimental and numerical investigation of wormholing during CO2 storage and water alternating gas injection, International Journal of Greenhouse Gas Control, 94, art. no. 102901 . doi:10.1016/j.ijggc.2019.102901
  16. Gong J., Vincent-Bonnieu S., Kamarul Bahrim R., Groenenboom J., Farajzadeh R., Rossen W. (2018) Modelling of liquid injectivity in surfactant-alternating-gas foam enhanced oil recovery. In SPE EOR Conference at Oil and Gas West Asia. Society of Petroleum Engineers, 2018. doi:10.2118/190435-MS
  17. Tang, J., Vincent-Bonnieu, S., Rossen, W.R. (2019) CT coreflood study of foam flow for enhanced oil recovery: The effect of oil type and saturation. Energy, 188, art. no. 116022. doi:10.1016/j.energy.2019.116022
  18. Peters, E., Arts, R.J., Brouwer, G.K., Geel, C.R., Cullick, S., Lorentzen, R.J., Chen, Y., Dunlop, K.N.B., Vossepoel, F.C., Xu, R., Sarma, P., Alhutali, A.H., Reynolds, A.C. (2010). Results of the brugge benchmark study for flooding optimization and history matching, SPE Reservoir Evaluation and Engineering, 13 (3), pp. 391-405. doi:10.2118/119094-PA