Journal publications

  1. X. Tian, O. Volkov, and D. Voskov, 2024. An advanced inverse modeling framework for efficient and flexible adjoint-based history matching of geothermal fields, Geothermics 116. doi:10.1016/j.geothermics.2023.102849.
  2. X. Lyu and D. Voskov, 2023. Advanced modeling of enhanced CO2 dissolution trapping in saline aquifers, International Journal of Greenhouse Gas Control 127. doi:10.1016/j.ijggc.2023.103907.
  3. M. Major, A. Daniilidis, T. M. Hansen, M. Khait, and D. Voskov, 2023. Influence of process-based, stochastic and deterministic methods for representing heterogeneity in fluvial geothermal systems, Geothermics 109. doi:10.1016/j.geothermics.2023.102651.
  4. K. M. Pour, D. Voskov, and D. Bruhn, 2023. Coupled modeling of well and reservoir for geo-energy applications, Geoenergy Science and Engineering 227. doi:10.1016/j.geoen.2023.211926.
  5. K. M. Pour, D. Voskov, and D. Bruhn, 2023. Nonlinear solver based on trust region approximation for CO2 utilization and storage in subsurface reservoir, Geoenergy Science and Engineering 225. doi:10.1016/j.geoen.2023.211698.
  6. S. Tripuraneni, A. Novikov, and D. Voskov, 2023. Nonlinear finite volume discretization of geomechanical problem, International Journal for Numerical and Analytical Methods in Geomechanics 4712, 2283 – 2303. doi:10.1002/nag.3580.
  7. Y. Wang, D. Voskov, A. Daniilidis, M. Khait, S. Saeid, and D. Bruhn, 2023. Uncertainty quantification in a heterogeneous fluvial sandstone reservoir using GPU-based Monte Carlo simulation, Geothermics 114. doi:10.1016/j.geothermics.2023.102773.
  8. M. Wapperom, X. Tian, A. Novikov, and D. Voskov, 2023. FluidFlower Benchmark: Lessons Learned from the Perspective of Subsurface Simulation, Transport in Porous Media. doi:10.1007/s11242023-01984-8.
  9. S. de Hoop, D. Voskov, G. Bertotti, and A. Barnhoorn, 2022. An Advanced Discrete Fracture Methodology for Fast, Robust, and Accurate Simulation of Energy Production From Complex Fracture Networks, Water Resources Research 585. doi:10.1029/2021WR030743.
  10. A. Novikov, D. Voskov, M. Khait, H. Hajibeygi, and J. D. Jansen, 2022. A scalable collocated finite volume scheme for simulation of induced fault slip, Journal of Computational Physics 469. doi:10.1016/j.jcp.2022.111598.
  11. X. Tian and D. Voskov, Efficient application of stochastic Discrete Well Affinity (DiWA) proxy model with adjoint gradients for production forecast, Journal of Petroleum Science and Engineering 210 2022. doi:10.1016/j.petrol.2021.109911.
  12. Y. Wang and D. Voskov, 2022. High-Enthalpy Geothermal Simulation with Continuous Localization in Physics, Mathematics 1022. doi:10.3390/math10224328.
  13. S. d. Hoop, E. Jones, and D. Voskov, 2021. Accurate geothermal and chemical dissolution simulation using adaptive mesh refinement on generic unstructured grids, Advances in Water Resources 154. doi:10.1016/j.advwatres.2021.103977.
  14. X. Lyu, M. Khait, and D. Voskov, 2021. Operator-based linearization approach for modeling of multiphase flow with buoyancy and capillarity, SPE Journal 264, 1858 – 1878. doi:10.2118/205378-PA.
  15. X. Lyu, D. Voskov, and W. R. Rossen, 2021. Numerical investigations of foam-assisted CO2 storage in saline aquifers, International Journal of Greenhouse Gas Control 108. doi:10.1016/j.ijggc.2021.103314.
  16. X. Lyu, D. Voskov, J. Tang, and W. R. Rossen, 2021. Simulation of foam enhanced-oil-recovery processes using operator-based linearization approach, SPE Journal 264, 2287 – 2304. doi:10.2118/205399PA.
  17. X. Tian, A. Blinovs, M. Khait, and D. Voskov, 2021. Discrete well affinity data-driven proxy model for production forecast, SPE Journal 264, 1876 – 1892. doi:10.2118/205489-PA.
  18. Y. Wang, S. de Hoop, D. Voskov, D. Bruhn, and G. Bertotti, 2021. Modeling of multiphase mass and heat transfer in fractured high-enthalpy geothermal systems with advanced discrete fracture methodology, Advances in Water Resources 154. doi:10.1016/j.advwatres.2021.103985.
  19. Y. Wang, D. Voskov, M. Khait, S. Saeid, and D. Bruhn, 2021. Influential factors on the development of a low-enthalpy geothermal reservoir: A sensitivity study of a realistic field, Renewable Energy 179, 641 – 651. doi:10.1016/j.renene.2021.07.017.
  20. Y. Chen and D. Voskov, 2020. Optimization of CO2 injection using multi-scale reconstruction of composition transport, Computational Geosciences 242, 819 – 835. doi:10.1007/s10596-019-09841-8.
  21. Y. Wang, D. Voskov, M. Khait, and D. Bruhn, 2020. An efficient numerical simulator for geothermal simulation: A benchmark study, Applied Energy 264. doi:10.1016/j.apenergy.2020.114693.
  22. M. Khait and D. Voskov, 2018. Adaptive parameterization for solving of thermal/compositional nonlinear flow and transport with buoyancy, SPE Journal 232, 522 – 534. doi:10.2118/182685-pa.
  23. M. Khait and D. Voskov, 2018. Operator-based linearization for efficient modeling of geothermal processes, Geothermics 74, 7 – 18. doi:10.1016/j.geothermics.2018.01.012.
  24. M. Khait and D. V. Voskov, 2017. Operator-based linearization for general purpose reservoir simulation, Journal of Petroleum Science and Engineering 157, 990 – 998. doi:10.1016/j.petrol.2017.08.009.
  25. D. V. Voskov, 2017. Operator-based linearization approach for modeling of multiphase multi-component flow in porous media, Journal of Computational Physics 337, 275 – 288. doi:10.1016/j.jcp.2017.02.041.

PhD dissertations

  1. M. Khait, 2019. Delft Advanced Research Terra Simulator: General Purpose Reservoir Simulator with Operator-Based Linearization, Delft University of Technology. Institutional Repository.
  2. Y. Wang, 2021. The impact of heterogeneity on geothermal production: simulation benchmarks and applications, Delft University of Technology. Institutional Repository.
  3. X. Lyu, 2021. Simulation of foam in Enhanced Oil Recovery (EOR) and Carbon Capture and Storage (CCS) applications, Delft University of Technology. Institutional Repository.
  4. S. de Hoop, 2022. Towards the Uncertainty Quantification of Fractured Karst Systems: Reactive Transport and Fracture Networks, Delft University of Technology. Institutional Repository.
  5. X. Tian, 2023. General-purpose Inverse Modeling Framework for Energy Transition Applications Based on Adjoint Method and Operator-Based Linearization, Delft University of Technology. Institutional Repository.
  6. K. Mansour Pour, 2023. Modelling of coupled reservoir and wellbore for energy transition, Delft University of Technology. Institutional Repository.
  7. A. Novikov, 2024. A Finite Volume Framework for Accurate Modeling of Fault Reactivation in Poroelastic Rocks, Delft University of Technology. Institutional Repository.